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Outline

 What is our definition of document relation?
 Why we introduce LSI?
 How to evaluate the discovered relations?
 Results and Summary
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Document Relation Definition
 In document network/graph area, a relation is 

introduced by edge or path between document nodes 
where an edge is introduced by hyperlink, author, 
citation, etc. [Kessler63, Garfield72, Small73, Chen99, An04]  

 In IR and TM area, a relation is introduced by cosine 
similarity between query and the document vector or 
among two document vectors. respectively [Page98, 
Lawrence98, Baeza-Yates99, Theeramunkong04]
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 Usually, a relation is binary since it is introduced among 
only two documents

 Our approach:  find document relations in which each 
relation introduce on n documents where n >= 2 
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Document Relation Definition
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Document Relation Definition

Contents
• Rheumatic Fever
• Cardiovascular disease
• New Mexico
• Mortality
• etc.

Contents
• Cardiovascular disease
• New Mexico
• Nursing Project
• Therapy
• etc.

Contents
• Rheumatic Fever
• Cardiovascular disease
• Therapy
• etc.
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Document Relation Definition

Related Contents
• Rheumatic Fever
• Cardiovascular disease

Related Contents
• Cardiovascular disease
• New Mexico

Related Contents
• Cardiovascular disease
• Therapy
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Document Relation Definition

Related Content
• Cardiovascular disease

Related Contents
• Rheumatic Fever
• Cardiovascular disease

Related Contents
• Cardiovascular disease
• New Mexico

Related Contents
• Cardiovascular disease
• Therapy
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Document Relation Definition

• Many dimensions of content on the 
word-based relations

• Less #documents, more specific 
contents and more fine-grained relations

Related Content
• Cardiovascular disease

Related Contents
• Rheumatic Fever
• Cardiovascular disease

Related Contents
• Cardiovascular disease
• New Mexico

Related Contents
• Cardiovascular disease
• Therapy
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Method for document relation discovery

Modified Frequent Itemset Mining [Sriphaew05, Sriphaew07]

1102Data Mining
1140Association Rule

1212Technique
1140Rule
1130Association
2352Mining
2414Data
DCBA

document
Term
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• w(xi,tj) is a weight of term tj in document xi 
• preserves closure properties
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Method for document relation discovery

Modified Frequent Itemset Mining [Sriphaew05, Sriphaew07]

1102Data Mining
1140Association Rule

1212Technique
1140Rule
1130Association
2352Mining
2414Data
DCBA

document
Term

• BC
• AC
• ABC

Modified
Frequent
Itemset
Mining

Why FIM?   
– Possible to apply cosine similarity on every combination of document sets
– But our target is set of documents (involve more than two documents)
– Pruning strategy exists
– Several efficient algorithms

• w(xi,tj) is a weight of term tj in document xi 
• preserves closure properties
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Problems of Document Representation

 Existing approach directly exploits words/terms 
in documents to discover relations using word 
co-occurrences and shared vocabularies.

 A relation on a set of documents may occur 
even if they do not share any common words or 
terms but their terms are semantically related.
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Why we use LSI?
 We want some terms which are semantically related to 

existing terms in a document to have some weights 
while reducing meaningless terms (terms appear in 
small eigen vector)

 We still want to have term-document matrix where we 
can apply FIM to discover document relations, therefore, 
PCA which its input is covariance matrix is not our case.
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Latent Semantic Indexing (LSI)
 A is the input document-term matrix

 t is the number of terms

 d is the number of documents

 n = min(t,d)

 T and D have orthonormal columns T×TT=I and DT×D = I

 S is a diagonal matrix where si,j = 0 for i ≠ j

At×d = Tt×n × Sn×n × Dd×n
T

LSI uses an SVD method to decompose the input A and represents it as A′ with the 
objective function:                          min || A – A′ ||2 
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 A is the input document-term matrix

 t is the number of terms

 d is the number of documents

 n = min(t,d)

 T and D have orthonormal columns T×TT=I and DT×D = I

 S is a diagonal matrix where si,j = 0 for i ≠ j

At×d = Tt×n × Sn×n × Dd×n
T

LSI uses an SVD method to decompose the input A and represents it as A′ with the 
objective function:                          min || A – A′ ||2 

A′t×d = T’t×r × 
S’r×r × D’d×r

T 
T S D

T
A

t × 
n

n × 
n

n × 
d

r
r

r

r

In some cases, rank(A) = r where r ≤ n, the diagonal elements of S are σ1, σ2, 
…, σn where σi>0 for 1 ≤ i ≤ r and σi=0 for r < i ≤ n 

In this work, we get potential σi by using simple kappa statistics, i.e., relative 
accuracy of Ritz values acceptable as eigenvalue >= 1.00E-06
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Proposed threshold δ

 Since some meaningless terms will have some 
wieghts after dimension reduction, therefore, we 
want to filter out those terms.

 We generate new document-term matrix A’’ where,
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Objectives

Study effects of different weighting,
tf and tf-idf for new modified approach of 
FIM

Study effects of LSI with δ threshold and the 

quality of document relations1102Data Mining
1140Association Rule

1212Technique
1140Rule
1130Association
2352Mining
2414Data
DCBA

document
Term

• BC
• AC
• ABC

Modified
Frequent
Itemset
Mining

LSI model with 
threshold δ



15

SIIT

PAKDD 2008 15

Evaluation Concept
Problems:
 Lack of corpus with correct answers
 Excessive time-consuming and labor-intensive task for human evaluation
 For example, we need to investigate 10000C2≈ 50×106 pairs if we want to 

construct a corpus with 10,000 documents

Solution Idea:
 Use other potential relation information as comparative criteria
 Trust knowledge for evaluation citations (or references) in research articles.
 Remark: our approach discovers word-based relations 

              but we make comparison with the citation-based relations w/o 
using 
              citation information for discovery
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Evaluation Concept

 Formulating the evaluation criteria as an “Ordered Accumulative 
Citation Matrix” (OACM) using the citation information and the 
transitivity function

A
References

  … B …
  …    …

B
References

  … C …
  …     …

C
References

  …     …
  …     …

D
References

  … C …
  …  …
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Evaluation Concept

 First Criteria:
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Evaluation Concept

 Second Criteria:
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Evaluation Concept

 Third Criteria:

 A  B  C  D
A   1   1   1   1
B   1   1   1   1
C   1   1   1   1
D   1   1   1   1

3-OACM
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We stop at third criteria (3-OACM) since there is no 
significant difference after third criteria in our 
preliminary experiments
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Evaluation Concepts
 Proposed Scoring method: Counting the valid relations based on 

evaluation criteria
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Evaluation Concepts
 Proposed Scoring method: Counting the valid relations based on 

evaluation criteria Discovered document relations
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Validity of discovered relation ABCD 
based on 1-OACM = 2/3 = 0.67
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Evaluation Concepts
 Proposed Scoring method: Counting the valid relations based on 

evaluation criteria

For all discovered set,

we use weighted mean of validity as evaluation 
measurement where the weight is given by the 
number of documents in each discovered relation.

Discovered document relations

A B

C D
ABCD

Validity of discovered relation ABCD 
based on 1-OACM = 2/3 = 0.67
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C D
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Dataset
 Test Collection

 10,817 scientific research articles*
 3 classes: Hardware, Data, Computer
 Extract citation network to form evaluation criteria

but exclude those texts from data
 Preprocessing: filtering stopwords, terms occur <3 times and 

bigram

* Articles are collected from ACM Digital Library
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N is Top-N rankings (by support) of discovered relations 
when either tf/tf-idf is used and LSI is applied with 
different δ  thresholds

1. w/o LSI, 
tfidf is better than tf 
tfidf can help to find relations for direct use of words/terms

2. LSI case,
Applying LSI is better than w/o LSI
tf is better than tfidf is better than idf degrades the performance of LSI
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N is Top-N rankings (by support) of discovered relations 
when either tf/tf-idf is used and LSI is applied with 
different δ  thresholds

1. δ threshold
There is a suitable threshold to 
achieve highest validity
LSI helps to discover direct citations 
more than indirect citations (we left a 
method to 
optimize δ threshold as future work)

2. LSI case & OACM,
1-OACM 
Higher δ is better than Lower δ
2-,3-OACMs
Lower δ is better than Higher δ
LSI helps to discover direct citations 
more than indirect citations
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Conclusions

 This work presents new approach to discover document relations using FIM 
and applying LSI for improving good document representation

 The quality of discovered document relations from our word-based 
approach can be relatively compared with ones from citation network. 
Those relations may be not the same kind of relations, but they shows 
good relation between those two kinds of document relations

 LSI is helpful to discover meaningful document relations especially the 
relations that is identical to direct citations whereas we still have indirect 
citations in the top ranks of discovered relations
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Discussions and Future Works
 Some weak points of this work:

 Testing on one corpus since it is difficult to construct large enough data 
of this kind.

 Starting research for a new problem of document relation discovery 
where each relation composes of two or more documents. Therefore, 
there is no other method addressed the same problem with us. 
Although we can modify other existing methods for this task, we just 
want to sketch up the solution and fulfill all necessary processes for 
document relations especially the evaluation concept

 Low validity does not mean bad relations but it is not coincident with 
citation relations. Our method performs well in detect jeopardize articles 
and some novel relations which is not introduced by citations 

 Exploring other term weighting and dimension reduction approaches
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Thank you
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