
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004
761

PAPER

Fast Algorithms for Mining Generalized Frequent Patterns
of Generalized Association Rules

Kritsada SRIPHAEW†, Student Member and Thanaruk THEERAMUNKONG†, Member

SUMMARY Mining generalized frequent patterns of generalized asso-
ciation rules is an important process in knowledge discovery system. In
this paper, we propose a new approach for efficiently mining all frequent
patterns using a novel set enumeration algorithm with two types of con-
straints on two generalized itemset relationships, called subset-superset and
ancestor-descendant constraints. We also show a method to mine a smaller
set of generalized closed frequent itemsets instead of mining a large set of
conventional generalized frequent itemsets. To this end, we develop two
algorithms called SET and cSET for mining generalized frequent itemsets
and generalized closed frequent itemsets, respectively. By a number of ex-
periments, the proposed algorithms outperform the previous well-known
algorithms in both computational time and memory utilization. Further-
more, the experiments with real datasets indicate that mining generalized
closed frequent itemsets gains more merit on computational costs since the
number of generalized closed frequent itemsets is much more smaller than
the number of generalized frequent itemsets.
key words: data mining, knowledge discovery, generalized association
rule, Galois lattice

1. Introduction

Association rule mining (ARM) is one of the important tasks
in the area of Knowledge Discovery in Databases (KDD).
ARM ([1], [7], [20]) is a process to find the set of all sub-
sets of items (called itemsets) that frequently occur in the
database records or transactions, and then to extract the rules
telling us how a subset of items influences the presence of
another subset. However, association rules may not provide
desired knowledge in the database. It may be limited with
the granularity over the items. For example, a rule “5% of
customers who buy wheat breads, also buy chocolate milk”
is less expressive and less useful than a more general rule
“30% of customers who buy bread, also buy milk”. For
this purpose, generalized association rule mining (GARM)
was developed using the information of a pre-defined tax-
onomy over the items. The taxonomy is a piece of knowl-
edge, e.g. the classification of the products (or items) into
brands, categories, product groups, and so forth. Given a
taxonomy where only leaf nodes (leaf items) present in the
transactional database, more informative, initiative and flex-
ible rules (called generalized association rules) can be mined
from the database. Each generalized association rule con-
tains items from any level of a taxonomy. Similar to ARM,
the most important problem of GARM is how to efficiently
find all generalized frequent itemsets, which is the compu-

Manuscript received January 23, 2003.
Manuscript revised June 29, 2003.
†The authors are with Sirindhorn International Institute of

Technology, Thammasat University, Bangkadi, Muang, Pathum-
thani, 12000 Thailand.

tational intensive step.
In the past, there were still few works related to

GARM. Most of them focus to fasten mining generalized
frequent itemsets. In [14], five algorithms named Basic,
Cumulate, Stratify, Estimate and EstMerge were proposed.
These algorithms apply the horizontal database and breath-
first search strategy like Apriori-based algorithm ([2]). They
use the extended database, constructed by adding all distinct
ancestors of each items existing in its original transaction,
to mine all generalized frequent itemsets. Most methods in
GARM exploit some constraints among itemsets for prun-
ing, and discarding meaningless itemsets, i.e. the itemsets
containing both an item and its ancestor according to the
given taxonomy. However, these algorithms waste a lot of
time in multiple scanning the database even the sampling
method is applied. As a more recently efficient algorithm,
Prutax ([8]) applies a so-called vertical database format to
reduce the computational time needed for multiple scanning
the database. Instead of “generate and test” as done in pre-
vious algorithms, it avoids to generate meaningless itemsets
by using hash tree checking. Nevertheless in Prutax, the lim-
itation is the cost of checking whether their ancestor item-
sets are frequent or not by using hash tree before counting its
actual support. By the way, there exists a slightly different
task for dealing with multiple different minimum support in
different levels of itemsets as shown in [6] and [10]. A par-
allel algorithm has also been proposed in [13]. Some recent
applications that utilize a GARM are shown in [11] and [9].
Our preliminary research related to GARM is shown in [15].

In this work, we propose a new approach for efficient
finding all generalized frequent itemsets using two types of
constraints on two generalized itemset relationships, called
subset-superset and ancestor-descendant constraints. We
show that it is sufficient to mine only a small set of gen-
eralized closed frequent itemsets instead of mining a large
set of conventional generalized frequent itemsets. Two al-
gorithms, named SET and cSET, are proposed to efficiently
find generalized frequent itemsets and generalized closed
frequent itemsets, respectively.

2. Generalized Association Rules and Generalized Fre-
quent Itemsets

With the presence of a taxonomy, the formal problem de-
scription of generalized association rule is different from
earlier works on association rule mining ([1], [2]). For clar-
ity, all explanations in the section are illustrated using an

762
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004

Fig. 1 An example of databases and taxonomy.

example shown in Fig. 1.
LetT be a taxonomy, a directed acyclic graph on items,

which represents is-a relationship by edges (e.g. Fig. 1 (C)).
The items in T are composed of a set of leaf items (IL) and
a set of non-leaf items (INL). Let I = {i1, i2, . . . , im} be a set
of distinct items where I = IL∪ INL, and let T = {1, 2, . . . , n}
be a set of transaction identifiers (tids). In this example,
IL = {A, B,C,D, E}, INL = {U,V,W}, I = IL ∪ INL = {A, B,
C,D, E,U,V,W}, and T = {1, 2, 3, 4, 5, 6}. A subset of I is
called an itemset and a subset of T is called a tidset. Nor-
mally, a transactional database is represented in the horizon-
tal database format, where each transaction corresponds to
an itemset (e.g. Fig. 1 (A)). An alternative to the horizontal
database format is the vertical database format, where each
item corresponds to a tidset which contains that item (e.g.
Fig. 1 (B)). Note that the original database contains only leaf
items. It is possible to represent an original vertical database
by extending it to cover non-leaf items where a transaction
of which item also supports its related items from taxonomy
(e.g. Fig. 1 (D)). Let the binary relation δ ⊆ I × T be an
extended database. For any x ∈ I and y ∈ T , xδy can be
denoted when x is related to y in the database (called x is
supported by y). Here, except the elements in I, lower case
letters are used to denote items and upper case letters for
itemsets.

For x̂, x ∈ I, x̂ is an ancestor of x (conversely x is a
descendant of x̂) when there is a path from x̂ to x in T . For
any x ∈ I, a set of all its ancestors (descendants) is denoted
by ANC(x) (DES(x)). For example, ANC(B) = {U,V}
and DES(W) = {D, E}.

A generalized itemset G is an itemset each element of
which is not an ancestor of the others, G = {i ∈ I|∀ j ∈ G, i �
ANC(j)}. For example, {A, B} (AB for short), {A,W} (AW
for short) are generalized itemsets. Let IG = {G1,G2, . . . ,
Gl} be a finite set of all generalized itemsets. Note that, for
1 ≤ i ≤ l, Gi ⊆ I and IG ⊆ P(I). The support of G, denoted
by σ(G), is defined by a percentage of the number of trans-
actions in which G occurs as a subset to the total number of

transactions, thus σ(G) = |t(G)|/|T |. Any G is called gen-
eralized frequent itemset (GFI) when its support is at least a
user-specified minimum support (minsup) threshold.

In GARM, a meaningful rule is an implication of the
form R: G1 → G2, where G1,G2 ∈ IG, G1 ∩ G2 = ∅, and
no item in G2 is an ancestor of any items in G1. For ex-
ample, A → C and U → C are meaningful rules, while
A → UC is a meaningless rule because its support is re-
dundant with A → C. The support of a rule G1 → G2, de-
fined as σ(G1 ∪G2) = |t(G1 ∪G2)|/|T | = |t(G1) ∩ t(G2)|/|T |,
is the percentage of the number of transactions containing
both G1 and G2 to the total number of transactions. The
confidence of a rule, defined as σ(G1 ∪ G2)/σ(G1), is the
conditional probability that a transaction contains G2, given
that it contains G1. For example, the support of A → C is
σ(A∪C) = |t(A)∩t(C)|/|T | = |1245|/6 = 4/6 or 67% and the
confidence is σ(A∪C)/σ(A) = 1 or 100%. The meaningful
rule is called a generalized association rule (GAR) when its
confidence is at least a user-specified minimum confidence
(minconf) threshold.

The task of GARM is to discover all GARs the supports
and confidences of which are at least minsup and minconf,
respectively.

3. Two Relationships on Generalized Itemsets

This section introduces two relationships, i.e. subset-
superset and ancestor-descendant relationships, based on
lattice theory. For more details about lattice theory, the
reader can refer to [4]. To construct the generalized itemset
lattice in GARM, we adapt the formal concept analysis ([5])
and itemset lattice in ARM ([19]). Similar to ARM, GARM
occupies the subset-superset relationship which represents a
lattice of generalized itemsets. As the second relationship,
an ancestor-descendant relationship is originally introduced
in this work to represent a set of k-generalized itemset tax-
onomies.

3.1 Subset-Superset Relationship: Lattice of Generalized
Itemsets

Definiton 1 (Subset-superset relationship): Let a binary
relation δS ⊆ P(I) × P(I) be the subset-superset relation-
ship. For any X1, X2 ∈ IG, X1δSX2 is denoted when X1 is a
subset of X2 (X2 is a superset of X1).

Definiton 2 (Lattice of generalized itemsets): The lattice
of generalized itemsets is the partial order specified by a
subset-superset relationship δS, where the meet is given by
the set intersection on generalized itemsets, and the join is
given by the set union on generalized itemsets as follows.
For any X1, X2 ∈ IG,

Meet : X1 ∧ X2 = (X1 ∩ X2)

Join : X1 ∨ X2 = (X1 ∪ X2)

SRIPHAEW and THEERAMUNKONG: FAST ALGORITHMS FOR MINING GENERALIZED FREQUENT PATTERNS OF GARS
763

Fig. 2 Relationships on generalized itemsets (a part).

3.2 Ancestor-Descendant Relationship: k-Generalized
Itemset Taxonomies

Definiton 3 (Ancestor-Descendant relationship): Let a bi-
nary relation δA ⊆ P(I) × P(I) be the ancestor-descendant
relationship. For any X1, X2 ∈ IG, X1δAX2 can be denoted
when X2 is obtained by replacing one or more items in X1

with one of their descendants, X1 is called an ancestor item-
set of X2 (and X2 is called a descendant itemset of X1).

By using ancestor-descendant relationship, we can
extend the original taxonomy (1-generalized itemset tax-
onomy) to express the ancestor-descendant relationships
among k-length generalized itemsets.

Definiton 4 (k-generalized itemset taxonomy): The k-gen-
eralized itemset taxonomy is the partial order specified by
an ancestor-descendant relationship δA among generalized
itemsets with the same k-length .

3.3 Combining Two Relationships

The generalized itemsets can be shown in a complex view
that combines both subset-superset and ancestor-descendant
relationships. For example, assume the taxonomy as in
Fig. 1 (C) and a set of items {A, B,C,U,V}, the relation-
ships among generalized itemsets are shown in Fig. 2. The
solid lines express the subset-superset relationship where
the lower itemset is a subset of the upper itemset, and the
dashed lines express the ancestor-descendant relationship
where the itemset at the beginning of an arrow is an ancestor
itemset of the itemset at the end of the arrow.

4. Constraints on Generalized Itemsets

We can exploit these two relationships as constraints for ef-
ficient finding GFIs. Two lemmas are presented to justify
the optimization as follows.

Lemma 1 (Subset-Superset Constraint): For any X ∈ IG, if
a generalized itemset X is frequent, all subsets of X are fre-
quent. In conversely, if a generalized itemset X is infrequent,
all supersets of X are infrequent.

Proof: Let X, Y, Z ∈ IG and Z = X ∪ Y. The support of Z,
σ(Z) = |t(Z)| = |t(X) ∩ t(Y)| must be less than or equal to

the supports of its subsets, i.e. σ(X) and σ(Y). Thus, if Z
satisfies minsup (frequent), both X and Y do too. If both or
either of X and Y does not satisfy minsup (infrequent), then
neither does Z. �

For example, given minsup = 67%, a generalized item-
set ACD (σ(ACD) = 33%) is infrequent. The superset
of ACD, such as ACDE (σ(ACDE) = 33%) or ABCDE
(σ(ABCDE) = 17%), are also infrequent. This constraint
shows that we need not to consider the supersets of infre-
quent itemsets.

Lemma 2 (Ancestor-Descendant Constraints): For any X
∈ IG where X̂ is an ancestor itemset of X, if X is frequent,
then X̂ is also frequent. In conversely, if X̂ is infrequent, X
is also infrequent.

Proof: Let x, x̂ ∈ I and Y, Z, Ẑ ⊆ I. Assume that Z = x ∪ Y,
Ẑ = x̂ ∪ Y. x̂ is an ancestor of x, and Ẑ is an ancestor
itemset of Z. The support of Ẑ, σ(Ẑ) = |t(Ẑ)| = |t(x̂) ∩ t(Y)|,
must be greater than or equal to the support of Z, σ(Z) =
|t(Z)| = |t(x) ∩ t(Y)|, since t(x) ⊆ t(x̂). Thus, If Z satisfies
minsup (frequent), so does Ẑ. If Ẑ does not satisfy minsup
(infrequent), neither does Z. �

For example, given minsup = 83%. A generalized
itemset UE (σ(UE) = 67%) is infrequent. The descen-
dant itemsets of UE, such as AE (σ(AE) = 33%) and BE
(σ(BE) = 33%), are also infrequent. This constraint shows
that we need not to consider the descendant itemsets of in-
frequent itemsets.

5. Generalized Closed Itemsets

In this section, the concept of generalized closed itemsets is
defined by extending the traditional concept of closed item-
sets in ARM ([12], [18]) to cope with the generalized item-
sets. We also show that a set of generalized closed frequent
itemsets is sufficient to be the representative of a larger set
of GFIs. In order to understand the generalized closed fre-
quent itemset, we introduce a maximal generalized itemset
which is another representation of a generalized itemset.

5.1 Maximal Generalized Itemsets

In general, a generalized itemset can be transformed into
another representation that includes both original items and
all of their ancestors. This representation, we call a maximal
generalized itemset of a generalized itemset. The formal
definition is stated as follows.

Definiton 5 (Maximal Generalized Itemset): Let X ⊆ I, X
is called a maximal generalized itemset iff the following
condition is satisfied ∀i (i ∈ X → ANC(i) ⊂ X).

In every situation, each generalized itemset can always
be transformed to each maximal generalized itemset and
vice versa. Using the extended database, a generalized item-
set can easily be transformed into the form of a maximal
generalized itemset. This form is useful for finding general-
ized closed itemsets, since the concept of a closure finds a

764
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004

maximal superset of an itemset that supports the same tid-
set as a generalized itemset (described below). Thus, max-
imal generalized itemsets are generated instead of gener-
alized itemsets when we find generalized closed itemsets.
However each element in the set can be mapped to its corre-
sponding generalized itemset.

5.2 Generalized Closed Itemset Concept

Definiton 6 (Galois Connection): Let X ⊆ I, and Y ⊆ T .
Then the mapping functions,

t : P(I) �→ P(T), t(X) = {y ∈ T |∀x ∈ X, xδy}
i : P(T) �→ P(I), i(Y) = {x ∈ I|∀y ∈ Y, xδy}

define a Galois connection between the power set of I and
the power set of T .

The following properties hold for all X, X1, X2 ⊆ I and
Y, Y1, Y2 ⊆ T :

1. X1 ⊆ X2 → t(X1) ⊇ t(X2).
2. Y1 ⊆ Y2 → i(Y1) ⊇ i(Y2).
3. X ⊆ i(t(X)) and Y ⊇ t(i(Y)).

The mapping t(X) is the maximal tidset which contains
the generalized itemset X , given by t(X) =

⋂
x∈X t(x). The

mapping i(Y) is the maximal generalized itemset which is
contained in the tidset Y, given by i(Y) =

⋂
y∈Y i(y). For

example, t(UDE) = t(U)∩ t(D)∩ t(E) = 123456∩ 13456∩
1356 = 1356, and i(356) = i(3)∩i(5)∩i(6) = VUBCWDE∩
VUABCWDE ∩ VUBCWDE = VUBCWDE.

Apart from the closure operator, the generalized clo-
sure operator is defined as follows:

Definiton 7 (Generalized Closure): Let X ⊆ I, and Y ⊆ T .
The two mappings

gcit : P(I) �→ P(I), gcit(X) = i ◦ t(X) = i(t(X))

gcti : P(T) �→ P(T), gcti(Y) = t ◦ i(Y) = t(i(Y))

are generalized closure operators on generalized itemset and
tidset respectively. X is called a generalized closed item-
set (GCI) when X = gcit(X), and Y is called a generalized
closed tidset (GCT) when Y = gcti(Y).

For X ⊆ I and Y ⊆ T , the generalized closure operators
gcit and gcti satisfy the following properties:

1. Y ⊆ gcti(Y).
2. X ⊆ gcit(X).
3. gcit(gcit(X)) = gcit(X), and gcti(gcti(Y)) = gcti(Y).

The first property tells that Y is a subset of its generalized
closure. For example, let Y = 135, gcti(135) = t(i(135)) =
t(UCDE) = 1356. Since 135 � gcti(135) = 1356, such that
1356 is a generalized closed tidset while 135 is not. The
second property says that X is a subset of its generalized clo-
sure. For example, gcit(VWDE) = i(t(VWDE) = i(1356) =
VUCWDE. Since VWDE � gcit(VWDE) = VUCWDE,
such that VUCWDE is a GCI while VWDE is not. Note

Fig. 3 Galois lattice of concepts and frequent concepts.

that each GCI is a maximal generalized itemset, but it can
be mapped to a generalized itemset. From the previous ex-
ample, VWDE and VUCWDE can be transformed to the
generalized itemsets VDE and UCDE, respectively. In gen-
eralized itemset form, this means that the GCI of VDE is
UCDE. The last property says that the round-trip of map-
ping will obtain the same closure.

For any GCI X, there exists a companion GCT Y, with
the property of Y = t(X) and X = i(Y). Such a GCI and
GCT pair X × Y is called a concept. All possible concepts
can form a Galois lattice of concepts as shown in Fig. 3.

5.3 Generalized Closed Frequent Itemsets

The support of a concept X × Y is a percentage of the
size of closed tidset Y to the total number of transactions
(|Y |/|T |). A GCI is called a generalized closed frequent item-
set (GCFI) when its support is at least minsup.

Lemma 3 (Equivalence of Support): For any generalized
itemset X, its support is equal to the support of its gener-
alized closure (σ(X) = σ(gcit(X))).

Proof: The support of X, σ(X) is |t(X)|/|T |, and the support
of gcit(X), σ(gcit(X)) is |t(gcit(X))|/|T |. To prove the lemma,
we have to show that t(X) = t(gcit(X)).

Since gcti is a generalized closure operator, it satis-
fies the first property that t(X) ⊆ gcti(t(X)) = t(i(t(X))) =
t(gcit(X)). Thus t(X) ⊆ t(gcit(X)). In the other case, the
gcit(X) provides the maximal itemset, i.e. X ⊆ gcit(X),
which implies that t(X) ⊇ t(gcit(X)) due to the first prop-
erty of Galois connection. Thus we conclude that t(X) =
t(gcit(X)). �

Implicitly, the lemma states that all GFIs can be
uniquely determined by the GCFIs since the support of any
generalized itemsets will be equal to its generalized clo-
sure. Given a set of GCFIs, a Hasse diagram represent-
ing the subset-superset relationship among concepts in the
Galois lattice, can be constructed using the method in [16]
with O(l.m.w(L).d(L)) in time, where l is the average size
of generalized itemsets, m is the number of items, w(L) is
the width of the lattice and d(L) is the maximal degree of a
lattice node. Consequently, all GFIs and their supports can
be efficiently determined from the GCFIs and their Hasse
diagram (Galois lattice). However, all GFIs need not to be
discovered, since a set of GCFIs is typically used to con-
struct a minimal set of non-redundant rules as shown in [3]

SRIPHAEW and THEERAMUNKONG: FAST ALGORITHMS FOR MINING GENERALIZED FREQUENT PATTERNS OF GARS
765

Fig. 4 Set enumeration using SET algorithm (minsup = 50%).

and [17]. In the worst case, the number of GCFIs is equal to
the number of GFIs, but typically it is much smaller. From
our example, there are 10 GCIs which are the representa-
tives of a large amount of all generalized itemsets as shown
in Fig. 3. With minsup = 50%, only 7 concepts (in bold font)
are GCFIs.

6. Algorithms: SET and cSET

This section describes two algorithms, SET and cSET, that
utilize two constraints for efficiently mining GFIs and GC-
FIs, respectively. For fast finding all GFIs, each of the
lemma in Sect. 4 can be applied to each relationship of gen-
eralized itemsets. Lemma 1 can be applied to the lattice of
generalized itemsets while Lemma 2 can be applied to the
taxonomies of k-generalized itemsets. Lemma 1 concerns
with the subset-superset relationship which exists in the
generalized itemset lattice, while Lemma 2 concerns with
the ancestor-descendant relationship which exists in the tax-
onomies of k-generalized itemsets. These lemmas enable us
to avoid generating itemsets that are dominantly infrequent.
To enumerate all GFIs, we can traverse each relationship of
generalized itemsets. For bi-directional traversal, the lattice
of generalized itemsets should be traversed from subsets to
their supersets and from ancestor itemsets to their descen-
dant itemsets. Before generating any generalized itemsets,
all of their subsets must be frequent. Similarly, an ancestor
itemset must be frequent before generating its descendant
itemsets. Following these approaches, only supersets and
descendant itemsets of GFIs are generated.

6.1 SET Algorithm

Most of computational cost on generating all GFIs is to
count supports of the generalized itemsets for checking
whether they are frequent or not, and checking to elimi-
nate meaningless itemsets. The SET algorithm applies two
techniques for enumerating GFIs using an extended verti-
cal database format. The first one is to apply our novel set

enumeration to generate only generalized itemsets without
intensive checking on meaningless itemsets. This set enu-
meration was proposed in our previous work ([15]). The
second technique is to apply a bi-directional traversal during
set enumeration in order to avoid generating obvious infre-
quent itemset.

As stated in Sect. 5.1, a generalized itemset is trans-
formed from a maximal generalized itemset by omitting the
ancestors of items in the maximal set. However, the rep-
resentation of a maximal generalized itemset is useful for
describing the process of set enumeration as follows. Nor-
mally, two itemsets can be joined together when they have
the same size k and contain the preceding k − 1 itemset for
avoiding redundant enumeration. Among maximal gener-
alized itemsets, the join can be produced by a set union.
For example, joining VUA with VUC = VUAC. However,
when reducing to the generalized itemset, the join can be
produced by a set union of the first itemset with the last
item of the second itemset. For example, joining A with
UC = A ∪ C = AC where its tidset is given by a set inter-
section. This join operation on generalized itemsets is used
in the SET algorithm.

For clarity, we explain the SET algorithm by the exam-
ple illustrated in Fig. 4. With minsup = 50%, the proposed
set enumeration starts with an empty set. Then, all second-
leveled items of the taxonomy which are frequents, i.e. V
and W, are added to the second level of the tree. The chil-
dren under each generalized itemset are generated in two
manners. First, we generate taxonomy-based child itemsets
(based on ancestor-descendant relationship) by replacing the
right most item of that generalized itemset with one of their
children (if any). Secondly, we generate all join-based child
itemsets (based on subset-superset relationship) by union
that generalized itemsets with the last item of their siblings
that have higher orders. For example, generating the chil-
dren of itemset V , we first generate taxonomy-based child
itemsets, i.e. U and C, and then generate join-based child
itemsets, i.e. VW. Each generalized itemset which is gen-
erated must be frequent, otherwise it will be pruned. With

766
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004

the same approach, the process recursively occurs until no
new GFI is generated. Finally, a complete GFI tree is con-
structed without excessive checking cost. All generalized
itemsets in the Fig. 4, except ones with a cross, are GFIs.
The pseudo-codes of SET will be shown in Sect. 6.3.

6.2 cSET Algorithm

This section presents an extension of SET algorithm, called
cSET algorithm, for mining GCFIs. Since the GCFI is in the
form of the maximal generalized itemset, we thus intend to
enumerate the generalized itemsets in the form of maximal
generalized itemsets. The same process of set enumeration
in SET for bi-directional traversal is used, but the join opera-
tion is given by a set union on maximal generalized itemsets
with some conditional properties to discard non-GCFIs.

In the process of set enumeration, the following con-
ditional properties are used to reduce the number of GCFIs
needed to be generated. Assume that X1 × t(X1) is joined
with X2 × t(X2):

1. If t(X1) = t(X2), then (1) replace every occurrence of
X1 with X1 ∪ X2, (2) remove X2 if X2 is a sibling of
X1, and (3) generate taxonomy-based child itemsets of
the current new X1 (since the former X1 is replace by
X1 ∪ X2).

2. If t(X1) ⊂ t(X2), then (1) replace every occurrence of X1

with X1 ∪ X2, and (2) generate taxonomy-based child
itemsets of the current new X1.

3. If t(X1) ⊃ t(X2) and t(X1) ∩ t(X2) is not contain in hash
table, then (1) store t(X1) ∩ t(X2) in the hash table, (2)
remove X2 if X2 is a sibling of X1, and (3) generate X1

∪ X2 under X1 in tree.
4. If t(X1) � t(X2) and t(X1) ∩ t(X2) is not contain in hash

table, (1) store t(X1) ∩ t(X2) in the hash table, and (2)
generate X1 ∪ X2 under X1 in tree.

For clarity, we explain the cSET algorithm using the
example in Fig. 5. With minsup = 50%, the cSET algorithm
starts with an empty set. Then, all second-leveled items of
the taxonomy which are frequent, i.e. V and W, are added
to the second level of tree. Similar to SET, children are
generated based on two manners but the form of an item-
set has changed to be the maximal generalized itemset. The
taxonomy-based child itemset is generated by a set union

Fig. 5 Set enumeration using cSET algorithm (minsup = 50%).

between the current itemset and one of the children of the
rightmost item in that set according to taxonomy (if any).
The join-based child itemset is normally generated by a set
union on maximal generalized itemsets as previously de-
scribed in Sect. 6.1. The first child of V from taxonomy (i.e.
U) produces taxonomy-based itemset VU. The first prop-
erty holds for VU, which results in replacing V with VU
and then generating its taxonomy-based itemsets, i.e VUA
and VUB with the fourth property. The second child of V
from taxonomy (i.e. C) is still joined with the current item-
set (VU), which produces VUC. Again, the first property
holds for VUC, which results in replacing VU and the chil-
dren in the tree under VU with VUC. Because of this, VUA
and VUB are replaced by VUCA and VUCB, respectively.
Next, the current itemset (VUC) joins with its sibling (W),
i.e. VUCW. The third property holds for VUCW, which re-
sults in removing W and then generating VUCW under the
current VUC. This process shows that the first and third
properties can help us to discard some itemsets and the sub-
trees under those itemsets which are clearly not to be GC-
FIs. That is W and the subtree under W are pruned. With
the same approach, the process recursively occurs until no
new GCFI is generated. The hash tree is used for checking
whether the current tidset occurs in the previous enumera-
tion or not. Instead of 36 GFIs in Fig. 4, we enumerate only
7 GCFIs as shown in Fig. 5. This action results in reduc-
ing computational time. All remaining maximal generalized
itemsets in Fig. 5, except ones with a cross, are GCFIs.

6.3 Pseudo-Codes Description

The pseudo-codes of SET and its extension cSET are shown
in Fig. 6. For the SET algorithm, line 11.c, 13.c, 17.c and
18.c–30.c are ignored. In the main procedure SET-Main,
the subordinate function called SET-Extend, recursively cre-
ates a subtree using the proposed method. The GenTaxChild
function produces a taxonomy-based child itemset while the
GenJoinChild function produces a join-based child itemset.
In line 12 and 16, the generated itemsets must be checked
to ensure whether they are frequent or not. The NewNode
function generates a new itemset under the current item-
set. For the cSET algorithm, line 11.s, 13.s and 17.s are
ignored. Similar to SET, cSET uses SET-Main, SET-Extend,
GenTaxChild and GenJoinChild as well as cSET-Property
and Hash functions. Since the form of a generalized itemset
in SET is generalized itemset but cSET is maximal general-
ized itemset, line 13 of SET and cSET are different. Instead
of NewNode function in line 13.s and 17.s, we use the cSET-
Property function in line 13.c and 17.c to check the condi-
tional properties as previously described in Sect. 6.2 for gen-
erating only GCFIs. The Hash function is used for checking
whether the current tidset occurs in the previous enumera-
tion or not by returning 1 when exists, or storing that tidset
in the hash table and return 0 when not exists. Following
the SET algorithm, we will get the tree of all GFIs while the
cSET algorithm will get the tree of all GCFIs.

SRIPHAEW and THEERAMUNKONG: FAST ALGORITHMS FOR MINING GENERALIZED FREQUENT PATTERNS OF GARS
767

Fig. 6 The pseudo-codes of SET and cSET algorithm.

7. Experimental Results

For testing the performance of our approaches, we compare
SET and cSET algorithms with the two popular algorithms,
i.e. Cumulate ([14]) and Prutax ([8]). All algorithms were
coded in C. Experiments were done on a 1.7 GHz Pentium
IV PC with 640 MB of main memory, running Windows
2000.

To measure the exact execution time of algorithms (ex-
cluding intensive I/O cost), we make the dataset and its
taxonomy reside on the memory. Therefore, the memory
size should be large enough to store the data in order to
avoid page swapping time. Here, we can illustrate the cal-
culation of memory needed for the largest dataset as fol-
lows. The largest dataset in the experiments is the syn-
thetic dataset with 1 million (106) transactions which con-
tains 10 items per transaction and 5 fanouts per item. Con-
verting the dataset to the vertical format, where an item is
encoded to an integer, the required memory for this dataset

Table 1 The default value of parameters in synthetic datasets.

Parameter Default
Number of transactions 100 K
Average size of the transaction 10
Number of items 100 K
Number of roots 250
Fanout 5
Depth-ratio 1
Minimum support 1%

Depth-ratio = probability that item in a rule comes from level i
probability that item comes from level i + 1

Table 2 The real datasets and their parameters.

Dataset Parameters
#Trans #Items* #Roots Fanout

MushroomR40F3 8124 159 40 3
MushroomR24F5 8124 143 24 5
ChessR15F5 3196 90 15 5
*#Items include both leaf (original) items and non-leaf items.

is 106 × 10 × 5 × 4 bytes ≈ 200 MB. From our investiga-
tion, the exact memory usage for this dataset including other
variables of the program and required memory for operat-
ing system is at least 32 MB. Approximately, 300 MB are
required where the remaining memory space can be used
for computation process. To process more transactions, we
need more memory. Anyway, 640 MB is large enough for
the current experiments.

7.1 Datasets

The synthetic and real datasets are used as benchmarks for
evaluating the performance. The synthetic datasets were au-
tomatically generated by a generator tool†. They mimic the
transactions in a retailing environment. The important de-
fault values of parameters in synthetic datasets are shown
in Table 1. Two standard real datasets, i.e. mushroom and
chess††, are also used for investigating our methods in actual
environment. These real datasets are often used for testing
the performance of data mining algorithms. There is no tax-
onomy specified in the original real datasets. Therefore, we
construct an additional taxonomy for each dataset by defin-
ing a number of roots and fanout of the taxonomy in order
to make all original items appear in the leaf level of the tax-
onomy. All 119 original items of mushroom can be covered
in the second depth of a taxonomy with the number of roots
and fanout respectively be 40 and 3 (or 24 and 5), and 75
original items of chess can be covered in the second depth
of taxonomy with the number of roots and fanout respec-
tively be 15 and 5. These taxonomies are suitable since the
original real datasets we used are dense and many items usu-
ally appear in the most portions of transactions. Therefore
with higher fanout, the excessive amount of dense patterns
may occur and then the algorithms suffer with the memory
limitation problem. Thus, we get three different datasets
as shown in Table 2. These three real datasets are fixed

†The generator tool are provided by IBM Almaden Site.
††Original mushroom and chess are provided by UCI Machine

Learning Database Repository.

768
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004

Fig. 7 Experimental results: taxonomy characteristics.

throughout the experiments.

7.2 Performance Testing

Four experiments are performed to investigate the perfor-
mance of the algorithms in different situations. At first, we
study on how the algorithms perform on different charac-
teristics of taxonomy. Secondly, we investigate the perfor-
mances of the algorithms on different scaling of database.
Thirdly, the performance of algorithms with various min-
sups is evaluated, and the numbers of frequent patterns (i.e.
GFIs and GCFIs) are compared. Finally, the memory usage
of each algorithm is checked using both synthetic and real
datasets. We only use real datasets in the third and fourth
experiments since it is not possible to vary the characteris-
tics of their taxonomy.

Taxonomy Characteristics: Figure 7 shows the execution
time of algorithms when the characteristics of taxonomy are
changed. The performances of SET and cSET are so close
since the numbers of GFIs and GFCIs almost equal (shown
in the latter experiment). Both algorithms are approximately
4 to 180 times faster than Prutax and 22 to 230 times faster
than Cumulate. In case of the smaller number of roots, tax-
onomy levels become deeper and then the number of an-
cestor itemsets turns to be larger. SET and cSET are not
sensitive to this situation while Prutax requires more time
for checking and Cumulate needs more time to modify the
transactions. With different fanouts, the number of children
of each non-leaf item in taxomomy is varied. The number
of ancestor itemsets in lower fanout is larger than higher
fanout. As shown in the figure, decreasing the fanout has
an effect similar to decreasing the number of roots. For a
lower depth ratio, we gain more frequent patterns that con-
tain items coming from the lower parts rather than the up-
per parts of taxonomy. The number of ancestor itemsets in-
creases and this phenomenon results in more time consum-
ing in Prutax and Cumulate. SET and cSET achieve approx-
imately 6–10 times faster than Prutax and 20–38 times faster
than Cumulate with depth-ratio variation.
Scaling Database: Figure 8 shows the execution time of
each algorithm when the database is scaled up and down. In

Fig. 8 Experimental results: scaling database.

this experiment, all taxonomy parameters are fixed to their
default values, but only the number of transactions and the
number of items are scaled. We observe an exponential in-
crement in the running time with the increasing number of
transactions. However, SET and cSET still perform well
with the large number of transactions. With the scaling num-
ber of items, SET and cSET are not affected by this variation
since an item occurs sparsely in the transactions and then
the number of GFIs to be counted is reduced, but it results
in more time consuming in Prutax and Cumulate.
Minsup Variation and #Frequent Patterns: Typically, the
real datasets are very dense, i.e. frequent patterns are mostly
long even high value of minsup while the synthetic datasets
are sparse. Table 3 shows the execution time of each al-
gorithm and the number of frequent patterns, when min-
sup is varied. The execution time is exponential growth

SRIPHAEW and THEERAMUNKONG: FAST ALGORITHMS FOR MINING GENERALIZED FREQUENT PATTERNS OF GARS
769

Table 3 Experimental results: Minimum support variation and number
of frequent patterns.

Minsup Execution Time (sec) #Frequent Patterns
SET cSET Prutax Cumulate #GFIs #GFCIs

Dataset: SynR250F5D1
4 0.7 0.7 9.5 30.6 228 226
3 1.0 1.0 11.3 37.7 404 401
2 1.5 1.4 14.9 58.5 848 843

1.5 2.0 1.8 19.3 73.2 1,484 1,475
1 2.9 2.6 29.9 101.1 3,235 3,211

0.75 4.0 3.3 40.8 71563.6 5,684 5,633
Dataset: MushroomR40F3

100 0.03 0.01 0.03 0.39 95 1
90 0.06 0.02 0.06 0.69 431 5
80 0.31 0.02 0.38 1.58 1,839 18
70 1.09 0.05 1.16 3.19 7,983 42
60 2.92 0.05 2.98 8.59 19,543 102
50 9.48 0.13 9.69 57.09 68,095 297

Dataset: MushroomR24F5
100 0.14 0.01 0.05 0.52 191 1
90 1.41 0.03 1.23 3.60 9,023 34
80 4.59 0.06 4.00 14.19 28,127 84
70 12.88 0.13 12.27 79.77 85,343 216
60 29.94 0.28 29.14 360.77 204,143 485
50 76.67 0.59 78.36 2141.99 524,231 1,102

Dataset: ChessR15F5
100 2.36 0.01 2.64 11.08 32,767 1
98 15.41 0.01 20.03 401 231,423 22
96 25.45 0.02 158.14 1127.92 389,119 45
94 65.69 0.02 926.25 7081.02 935,935 125
92 110.75 0.05 2895.33 19334.05 1,602,559 270
90 179.53 0.06 7120.33 48890.14 2,565,631 499

with decreasing minsup. SET and cSET provide similar
performance in the synthetic dataset (SYNR250F5D1), but
they perform differently on the real datasets (i.e. Mush-
roomR40F3, MushroomR24F5 and ChessR15F5). Cumu-
late cannot be executed with a lower minsup in a synthetic
dataset since it generates a lot of candidates which are at last
infrequent. In the real datasets, the performances of SET
and Prutax are quite close since the sizes of real datasets are
small, resulting in a trivial hashing time for Prutax. How-
ever, cSET still performs better than other algorithms, since
the number of GCFIs is excessively smaller than the number
of GFIs as shown in Table 3. We observe that the difference
between the number of GFIs and GCFIs is much smaller
in the synthetic datasets but dominantly larger in the real
datasets.
Memory Usage: Table 4 shows the maximum memory us-
age of each algorithm with different minsups in the synthetic
and real datasets. For the synthetic dataset, the memory us-
age of cSET is trivially greater than SET since the number
of their frequent patterns are almost equal and cSET has to
hold some GFIs in memory for checking. However, their
memory usage are rather smaller than Prutax. For the real
datasets, the memory usage of SET and cSET are smaller
than the other two algorithms, but the memory usage of Cu-
mulate grows excessively since a lot of candidates are gen-
erated and held in memory. These results confirm that SET
and cSET are superior to the other algorithms in memory
utilization.

Table 4 Maximum memory usage of each algorithms.

Dataset (%Minsup) Maximum Memory Usage (MB)
SET cSET Prutax Cumulate

SynR250F5D1 (2%) 35.9 44.6 52.8 28.2
SynR250F5D1 (1%) 46.2 48.9 55.0 136.3
MushroomR40F3 (80%) 12.9 11.6 16.3 23.4
MushroomR40F3 (60%) 13.2 13.7 17.4 29.8
MushroomR24F5 (80%) 13.0 13.4 16.4 29.4
MushroomR24F5 (60%) 13.8 22.3 17.8 79.9
ChessR15F5 (100%) 10.5 9.4 13.9 35.9
ChessR15F5 (98%) 10.8 9.8 14.9 72.4
ChessR15F5 (96%) 10.9 10.4 15.2 138.4

8. Conclusions

In this work, we presented a theoretical framework of gen-
eralized itemsets based on subset-superset relationship (rep-
resented by lattice of generalized itemsets), and ancestor-
descendant relationship (represented by taxonomy of k-
generalized itemsets). To efficiently discover all general-
ized frequent itemsets, we introduced two constraints corre-
sponding to these two relationships. We proposed SET and
cSET algorithms to enumerate generalized frequent itemsets
and generalized closed frequent itemsets, respectively. SET
and cSET use an efficient traversal on the combination of
two relationships to avoid generating meaningless itemsets,
and apply two constraints to prevent counting useless gen-
eralized itemsets that are obviously infrequent. This makes
SET and cSET efficiently find all frequent patterns. A num-
ber of experiments showed that SET and cSET outperform
the previous well-known algorithms in both computational
time and memory utilization, especially for real situations.
There are other problems related to ARM to be considered
in GARM, including incremental data mining, constraint-
based mining, interesting measures, negative rule mining,
parallel mining, and so on. They are left as our further ex-
plorations.

Acknowledgement

This paper has been supported by Thailand Research Fund
(TRF) and NECTEC under project number NT-B-06-4C-13-
508.

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining association
rules between sets of items in large databases,” Proc. 1993 ACM
SIGMOD International Conference on Management of Data, ed.
P. Buneman and S. Jajodia, pp.207–216, Washington, D.C., May
1993.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules,” Proc. 20th International Conference on Very Large Data
Bases, VLDB, ed. J.B. Bocca, M. Jarke, and C. Zaniolo, pp.487–
499, Morgan Kaufmann, 1994.

[3] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal, “Min-
ing minimal non-redundant association rules using frequent closed
itemsets,” Lecture Notes in Computer Science, vol.1861, pp.972–
986, 2000.

770
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.3 MARCH 2004

[4] B.A. Davey and H.A.Priestley, Introduction to Lattices and Order,
Second ed., Cambridge University Press, 2002.

[5] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, New York, 1997.

[6] J. Han and Y. Fu, “Mining multiple-level association rules in large
databases,” Knowledge and Data Engineering, vol.11, no.5, pp.798–
804, 1999.

[7] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufman, 2001.

[8] J. Hipp, A. Myka, R. Wirth, and U. Güntzer, “A new algorithm for
faster mining of generalized association rules,” Proc. 2nd European
Conference on Principles of Data Mining and Knowledge Discovery
(PKDD ’98), pp.74–82, Nantes, France, Sept. 1998.

[9] S.-Y. Hwang and E.-P. Lim, “A data mining approach to new li-
brary book recommendations,” Lecture Notes in Computer Science
ICADL 2002, pp.229–240, Singapore, Dec. 2002.

[10] C.L. Lui and F.L. Chung, “Discovery of generalized association
rules with multiple minimum supports,” Proc. 4th European Con-
ference on Principles of Data Mining and Knowledge Discovery
(PKDD2000), pp.510–515, Lyon, France, Sept. 2000.

[11] A. Michail, “Data mining library reuse patterns using generalized
association rules,” International Conference on Software Engineer-
ing, pp.167–176, 2000.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering fre-
quent closed itemsets for association rules,” Lecture Notes in Com-
puter Science, vol.1540, pp.398–416, 1999.

[13] T. Shintani and M. Kitsuregawa, “Parallel mining algorithms for
generalized association rules with classification hierarchy,” Proc.
1998 ACM SIGMOD International Conference on Management of
Data, pp.25–36, 1998.

[14] R. Srikant and R. Agrawal, “Mining generalized association rules,”
Future Gener. Comput. Syst., vol.13, no.2/3, pp.161–180, 1997.

[15] K. Sriphaew and T. Theeramunkong, “A new method for fiding gen-
eralized frequent itemsets in generalized association rule mining,”
Proc. Seventh International Symposium on Computers and Com-
munications, ed. A. Corradi and M. Daneshmand, pp.1040–1045,
Taormina-Giardini Naxos, Italy, July 2002.

[16] P. Valtchev, R. Missaoui, and P. Lebrun, “A fast algorithm for build-
ing the Hasse diagram of a Galois lattice,” Colloque LaCIM2000,
Combinatoire, Informatique et Applications, pp.293–306, Sept.
2000.

[17] M.J. Zaki, “Generating non-redundant association rules,” Proc. 6th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp.34–43, Boston, MA, Aug. 2000.

[18] M.J. Zaki and C.-J. Hsiao, “CHARM: An efficient algorithm for
closed itemset mining,” Proc. Second SIAM International Confer-
ence on Data Mining, ed. R. Grossman, J. Han, V. Kumar, H.
Mannila, and R. Motwani, pp.459–473, Arlington, VA, April 2002.

[19] M.J. Zaki and M. Ogihara, “Theoretical foundations of associa-
tion rules,” Proc. 1998 ACM SIGMOD International Conference on
Management of Data, pp.7:1–7:8, Seattle, WA, June 1998.

[20] C. Zhang and S. Zhang, “Association rule mining: Models and al-
gorithms,” Lecture Notes in Artificial Intelligence, Springer-Verlag,
July 2002.

Kritsada Sriphaew received the B.E. in
Computer Engineering from King Mongkut’s
Institute of Technology Ladkrabang, Thailand in
2000. He is now a doctoral candidate in Infor-
mation Technology Program, Sirindhorn Inter-
national Institute of Technology, Thailand.

Thanaruk Theeramunkong recieved a
bachelor degree in Electric and Electronics, and
master and doctoral degrees in Computer Sci-
ence from Tokyo Institute of Technology in
1990, 1992 and 1995, respectively. He manages
a text data mining project funded by NECTEC,
Thailand. His current research interests include
data mining, machine learning, natural language
processing, and information retrieval.

