ISCIT 2001

WABI1-01

A NEW SET ENUMERATION FOR MINING FREQUENT ITEMSETS
IN GENERALIZED ASSOCIATION RULE MINING

*Thanaruk Theeramunkong and **Kritsada Sriphaew

Information Technology Program
Sirindhorn International Institute of Technology
Thammasat University
P.O. Box 22 Thammasat Rangsit Post Office, Pathumthani 12121, Thailand
Phone:+66-2-986-9103(-8) Ext.2004, Fax:+66-2-986-9112(-3)
Email: *ping@siit.tu.ac.th **kong@siit.tu.ac.th

ABSTRACT

Generalized association rule mining is a
generalization of association rules mining based on
taxonomy, to discover more informative knowledge

from database. Previous approaches applied
traditional set enumeration, that needs a
computational expensive process to generate

candidate itemsets and check whether they are
frequent or not. In this paper, we propose a new set
enumeration without such intensive checking
process.

1. INTRODUCTION

In the area of knowledge discovery in database,
association rule mining is an important task, firstly
introduced in [1], to find the set of all subsets of
items (called itemsets) that frequently occur in
database records (transactions), and to extract the
rules indicating how a subset of items influences
the presence of another subset [2]. However,
finding association rules sometimes encounters
difficulties of finding desired knowledge in
database. For example, we may obtain the rule “5%
of customers who buy wheat bread, also buy
chocolate milk” which has more specific
knowledge and less probability than the general
rule “30% of customers who buy bread also buy
milk”. The latter rule is called generalized
association rule. It has more informative, initiative
and flexible than the former one.

Unlike traditional association rule mining,
generalized association rule mining includes so
called generalized items which exist in a taxonomy
(is-a hierarchy) over the items. For example, a
taxonomy for market basket data may classify
items (or products) into brands, categories, product
groups, etc. Similar to that of association rules
mining [1], the task of generalized association rule
mining consists of two steps: (1) finding all frequent
itemsets, and (2) generating all high confidence
rules. These frequent itemsets and high confidence
rules will also include generalized items and
generalized rules, respectively. The latter step is
relatively straightforward but the former is costly
computation.

So far, many approaches have been proposed to
quickly discovery all frequent itemsets. ML-T*
algorithms [4] were designed to solve a slightly
different task of generalized association rule

25

mining. It includes some constraints that each rule
contains only items with the same depth, and
different minimum supports are set for itemsets
with different depths. However, these constraints is
not realistic, the rule should come from arbitrary
levels of a taxonomy. Three algorithms named
Basic, Cumulate and Stratification were introduced
in [3]. These algorithms are constructed upon the
well-known Apriori algorithm where a traditional
horizontal database format is used. Based on
taxonomy, Basic algorithm first modifies each
transaction in a database by adding all generalized
items of each item existing in the original
transaction. Later, it uses the modified transactions
for mining with Apriori-based algorithm.
Cumulate, an improved variant of Basic, filters out
meaningless candidates, that are itemsets
containing both an item and its ancestor along with
taxonomy. Stratification uses a sampling method in
order to exploit taxonomy information for pruning
meaningless candidates. Although Stratification is
faster than the Basic and Cumulate algorithms, it is
does not completely generate all frequent itemsets.
More recently Prutax [5] was proposed, to use
vertical database format for fastening support
counting. It applies right-most depth-first search
with hash tree, instead of breath-first search of
Apriori-based algorithm, to check for (to avoid
generating) meaningless candidates and prunes
them out. However, the cost of conditional
checking and pruning candidates of this algorithm
is expensive.

In this paper, we investigate on this problem and
propose a new method to enumerate a set of
frequent itemsets without excessive conditional
checking. In Section 2, the task of mining
generalized association rules is described.
Optimization constraints and our set enumeration
are explained in Section 3. Out SET algorithm is
presented in Section 4. In Section 5, a number of
experimental results are shown. Finally, a
conclusion is made in Section 6.

2. PROBLEM SETTING

The generalized association rule can be formally
stated as follows : Let /= {i}, i), ..., i,,} be a set of
distinct items, let 7 = {1, 2, ..., n} be a set of
transaction identifiers (tids), and let D = {t; | je T}
be the input database where ¢ is the j-th transaction.

A transaction can be represented with a set of items
(subset of 1), so-called horizontal format. An item
can be represented with a set of transactions
containing it (subset of 7), so-called vertical format.

Let 7 be a taxonomy, a directed acyclic graph
(tree) on the items. An edge in T represents is-a
relationship. When there is an edge from 7, to i, in
T, i) is called a parent of i, and iy is called a child
of i, (i; is a generalization of i7). An item is called
an ancestor of i, denoted 7, when there is a path
fromitoiin T Only leaf items of a taxonomy
present in database. The other items are called
generalized items.

Trans. Itemsets
Items Tidsets
! ggE A | 1345
B 235
3 ABDE c 456
; ngDE D 135
p c E 1235

Figure 1 : Horizontal (left) and Vertical (right)
database formats

¢
‘/\A ‘/\A
X C D E
A& Ta
A B

Figure 2 : A taxonomy of items in database

Figure 1 shows an example of a database in two
formats. An example of taxonomy of this database
is shown in Figure 2. Here, I = {ABCDEJXY
Zy,and T={1,2 34,5, 6

A setI; c I is called an itemset. The support of
an itemset 7;, denoted otl}), is defined as a number
of transactions in which 1, occurs as a subset. A
i(1;) is defined as a set of transactions which
contain /; as their subset. An itemset is frequent if
its support is greater than or equal to a user-
specified minimum support (minsup) value.

A generalized association rule is an implication
of the form R: 11-7‘12, where I,,Igg], I]ﬁ[2=¢, and
no item in /; is an ancestor of any items in /,. For
example, 4-»C, X—C are generalized association
rules, while 4-»XC is not. The support of the rule,
defined as ofl;Uly), is the number of transactions
containing both /; and /,. For example, the support
of A=Cis o(4UC) = A C)| ={1345} {456}
= |{45}] = 2. The confidence of the rule, defined as
o(I;\vD)/o), is simply the conditional probability
that a transaction contains J 1, given that it contains
I). For example, the confidence of A-C is
o(AuC)/o(4) = 2/4. The rule is frequent if its
itemset /,U1, is frequent. The rule is confident if its
confidence is greater than or equal to a user-
specified minimum confidence (minconf) value.

26

Thus, the task of generalized association rule
mining is to discover all rules from arbitrary levels
of taxonomy that have support and confidence
greater than or equal minsup and minconf
thresholds, respectively. This consists of two main
steps. The first step is to find all frequent itemsets
and the second step is to generate all high
confidence rules. The latter step is relatively
straightforward while the former is costly
computation. In this work, we will focus on the
former step.

3. THE PROPOSED SET ENUMERATION

This section shows three constraints for
optimization techniques in calculating all frequent
itemsets. Based on these constraints, set
enumeration is presented.

3.1 Optimization constraints

The performance of finding frequent itemsets
depends on the amount of candidates to be counted,
and support counting for each candidate. For real
data, the vertical approach, i.e. a method using
vertical database format, is shown to outperform
the horizontal approaches [2]. In this approach,
support counting is simply implemented by
intersecting tidsets where the computational cost is
less than that in the horizontal approach. The
amount of candidates can be reduced by using
some constraints in the following lemmas.

Lemma 1. If an itemser I, is infrequent, all
supersets of I; are infrequent.

Assume that the support of X is lower than the
specified minsup. An itemset, which is constructed
by joining X with other itemsets, will have support
equal to the intersection of the tidset of X and the
other one. Therefore, its support is not greater than
X, and it is also infrequent.

Lemma 2. The support of an itemset I that
contains both item i, and its ancestor i, is equal to
the support of an itemset I, which contain only the
item i I

In Figure 2, the support of an itemset XAC,
equals to the support of an itemset 4C. That is,
o(XUALC) = [tONANC)| = t(A)(C)| =
o(AuC).

Lemma 3. For an itemset I,, the support of an
itemset I, (an ancestor itemset of I)) that is
generated by replacing one or more items in I 1 With
their ancestors, will be greater than or equal to the
support of I,

In Figure 2, the support of XC is greater than or
equal to the support of AC. That is, X)) = |t(4)|
and hence [t(X)nt(C)| = [t((ANC)] or o(XC) 2
o(AUC).

Lemma 1 shows that it is not necessary to count
the supports of superset itemsets of an infrequent
itemset. Lemma 2 shows that it is useless to
generate itemsets which contain both a certain item
and its ancestor. Lemma 3 shows that we need not

¢

Yx123456

»

Zx1235

Xx12345

»
>

YZx1235

—

Cx456 Dx135 Ex1235

Ax1345

e

ABx35 ACx4S AZx135

vy T +

ABCx5 ABZx35 ACZx5

+ v e

ABCZx5 ABDx35 ABEx35 ACDx5 ACExS ADEx135

Bx235

T

BCx5

+

ADx135 AEx135 BCZx5

ABCDx5 ABCEx5 ABDEx3S ACDExS BCDExS

ABCDEx5

e e—— — ——————————

BZx235

v

BDx35 BEx235 XCDx5 XCExS XDEx135

BCDx5 BCEx5 BDEx35§

»
>

+

XCx45 XZx1235 CZx5 YDx135 YEx1235 DExI135

)les XDx135 XEx1235 CDx5 CExS YDEx135
CDExS

XCDEx5

Figure 3 : A complete itemsets tree using a new set enumeration

count the support of any itemset that the ancestor
itemsets of which are infrequent. Lemma 1 can be
used in both traditional association rule mining and
generalized association rule mining while Lemma 2
and Lemma 3 can only be applied to generalized
association rule mining.

3.2 Set Enumeration

In the past, previous algorithms including Basic,
Cumulate and Prutax utilize the same set
enumeration as used in Apriori [1]. Even they may
occupy different orders of set enumeration. The
Apriori-based algorithms use breath-first search
strategy. Prutax uses right-most depth-first search
strategy, and then sorts items by increasing
generality [5] that is the left items is in the lower
level of taxonomy tree than the right one. The
former can apply only Lemma 1 and 2 but the latter
can invoke all of the constraints (Lemma 1-3) for
optimization, However, it uses hash tree for fast
checking on frequent itemsets with highly
computation. Unlike previous approaches, our new
set enumeration implements all three lemmas
without intensive checking.

Using the database in Figure 1 and a taxonomy
in Figure 2, our set enumeration starts with an
empty set. Then, we add all generalized frequent
items in the second level of the taxonomy, that are
item Y and Z, and form the second level of an
itemsets tree as shown in Figure 3. The children of
any itemsets are generated in two ways. First, we
generate all generalized child itemsets. Each
generalized child itemset is generated by replacing
the right-most items of those itemsets with one of
their children (if exists). Second, we generate all
Jjoined child itemsets by joining those itemsets with
all of their siblings that have higher orders with
trivial checking. For example, generating the
children of itemset Y, we first generate generalized
child itemsets that is X and C, and then generate
joined child itemsets, i.e. YZ. In the same way, the
generalized child itemsets of X (i.e. 4 and B) and
joined child itemsets of X (ie. XC and XZ,
replacing YZ with X) are generated. This process

27

occurs recursively until no itemsets are generated.
Finally, a complete itemsets tree is constructed
without excessive checking cost shown in Figure 3.

4. ALGORITHM

We propose a new algorithm, called SET, for
finding frequent itemsets tree based on the set
enumeration shown in Section 3.2. Figure 4 shows
pseudo-code of SET.

SET-MAIN (Datbase, Taxonomy,minsup):

1. Root = Null Tree // Root node of set enumeration

2. Addlink(Root, All frequent items from second level of taxonomy;
3. SET-EXTEND(Root)

SET-EXTEND(Father):
For i =1 to numlinks(Father)
GTree=Null Tree
For each child of (Last(F;) //Generate generalized child itemse!
C = Replace(Last(F;), Child;(Last(F})))
If supp(C) 2 minsup then Addlink(GTree, C)
For j = i+1 to numlinks(Father) //Generate joined child itemsei
C= Fi) Fj
If supp(C) 2 minsup then Addlink(GTree, C)
Father.Links{i]Child = Gtree
If GTree!=NULL then SET-EXTEND(Father.Links[i1.Child)

© oo

Figure 4 : The SET Algorithm

In this Figure, the main procedure is SET-MAIN
and a function, called SET-EXTEND, creates a
subtree follow by a proposed set enumeration. SET-
EXTEND is executed recursively to create all
descendant nodes under the root node. The Addlink
function creates a child node of a parent node, such
as Addlink(Y,X) creates a child node X of a parent
node Y. The Last function in line 6 returns the last
item of an itemset. For example, Last(XY) returns
Y. The if statement in line 8 and 11 prunes nodes
with supports less than minsup (i.e. infrequent).

5. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated and
compared with Prutax, which is the best algorithm
at the present time [5]. All experiments were made
on a 700 MHz Duron PC with 256 MB of memory.
The OS environment is Microsoft Windows 98.
Prutax and SET algorithms are coded in C++
language.

1000

" SET

- - @ - PRUTAX .-
...
|

100 4

Time (seconds)

—
[
L

4 3 2 1.5 1 0.75 0.5 0.375 025

Minimum Support (%)

1000

——— SET

- - #- - PRUTAX
—glOO-l. ~‘~-
g ...
ﬁ’l -'~.
£ B R
R LU S .--"'!- +

1 v T T v g T

25 375 5 7.5 10 15 20 30 40 S0 60

Figure 5

Synthetic datasets are used in our experiments.
They were automatically generated by the
generator tool provided at IBM Almaden site but
slightly modified default values as shown in {5].
Details of each parameter can be found in [3]. The
important default values of parameters in the
datasets are shown in Table 1.

Parameter Default
Number of transactions 100K
Average size of the transaction 10
Number of items 100K
Number of roots 250
Fanout 5
Depth-ratio 1
Minimum support 1%

ratio & probability that item in a rule comes from level i
Depth-ratio ~ probability that item comes from level i+1) (3]

Table 1 : The default values of parameters in
the datasets

Four experiments were made to investigate the
performance of SET compared with Prutax
algorithm. We varied four parameters : minimum
support, number of roots, fanout and depth-ratio.
The experimental results are shown in Figure 5.
With different minsup, SET runs 2-8 times faster
than Prutax. SET relatively performs well when the
datasets have less number of roots, that is the actual
situation in real-life database. SET can reduce more
cost in the case of lower fanout, ie. deep
taxonomy. SET achieves approximately 4-6 times
better than Prutax with depth-ratio variation.

6. CONCLUSION

This paper gives a result of investigating
optimization constraints using in various

120
l ——sET
100

N - - #- - ‘PRUTAX

.

64 128 256 512 1024 2048 4096 8192 16384
Number of Roots (items)

1000
———SET
= - @ - ‘PRUTAX
- 100 4 |
|- - - - -
g l'-l--l--l--l--l--.--l--l a
3
E 4
= 10 4 R A‘/’"—A
1 N ¥ i y v M v L T
025 0375 05 075 1 15 2 3 4 5 s

Depth-Ratio

: Experimental

algorithms for finding all frequent itemsets of
generalized association rule mining. We propose a
new set enumeration for generating frequent
itemsets without intensive checking. The
performance of our approach is shown via a set of
experiments by varying minimum support, number
of roots, fanout and depth-ratio As the result, our
approach is better than Prutax in all cases.

ACKNOWLEDGEMENTS

This paper has been supported by Thailand
Research Fund (TRF) and National and Computer
Technology Center (NECTEC) under project
number NT-B-06-4F-13-311 (on 2001).

REFERENCES

[1] R.Agrawal, T. Imielinski, A. Swami. “Mining
Association Rules between Sets of Items in
Large Databases,” In Proc. of ACM SIGMOD
’93, 1993, Washington, USA.

[2] M. J. Zaki and C.-J, Hsiao, “CHARM: An
efficient algorithm for closed association rule
mining,” Technical Report 99-10, Computer
Science Dept., Rensselaer Polytechnic
Institute, October 1999.

[3] R. Srikant, R. Agrawal, “Mining Generalized
Association Rules,” In Proc. of the VLDB °95,
1995, Ziirich, Switzerland.

[4] J. Han, Y. Fu, “Discovery of Multiple-Level
Association Rules,” In Proc. of the VLDB ’95,
1995, Ziirich, Switzerland.

[5] J. Hipp, A. Myka, R. Wirth, and U. Giintzer.
“A new algorithm for faster mining of

generalized association rules,” In Proc. 2m
PKKD, 1998.

