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Abstract

Scientific publications available in the digital libraries are potentially the world’s largest
knowledge source but there have been very few attempts to take advantage of this kind of
document. One traditional knowledge which is useful for retrieving desired information,
understanding the nature of document contents and revealing hidden information between
a set of documents, is the relations among such a collection of documents. Although rela-
tions among technical documents are distinctively useful, there is no trustworthy automatic
approach to evaluate the quality of discovered relations. Extended from a relationship be-
tween a document pair, the document relation can involve more than two documents where
the scope of related contents becomes more general depending on the co-occurring con-
tents. Applications of document relation discovery include an automatic discovery system
of related articles for literature review, an assistant system for article authoring and a novel
search engine which takes a set of documents as a query instead of a set of keywords or a
document as provided in a conventional method. To discover good document relations, this
thesis presents an extension of frequent itemset mining to discover the document relations on
an attribute-value database where the values are weighted by real values, instead of boolean
values as in the conventional method. The goals of thesis are: (1) to study how well the
word-based approach performs in finding relations among documents using frequent item-
set mining techniques, (2) to propose a method to automatically evaluate the discovered
document relations using a citation graph, and (3) to invent a measure for automatically
evaluating the quality of the discovered document relations. The approach is applied to
discover word-based relations among scientific publications. The proposed method is evalu-
ated using a set of scientific publications in a digital library to judge the quality of discovered
document relations based on their references (citations). With the concept of transitivity as
direct/indirect citations, the thesis introduces a series of evaluation criteria, called order ac-
cumulative citation matrices, to define the validity (quality) of discovered relations. Two
kinds of validity, called soft validity and hard validity, are presented to express the quality
of the discovered relations. For the purpose of impartial comparison, the expected validity
is statistically estimated based on the generative probability of each document relation pat-
tern. The experimental results show that the discovered document relations using a bigram
model as term definition are more valid than those using a unigram model. Stopword re-
moval is a significant scheme for filtering unnecessary terms in the process of representing
document content. The results also show that the proposed method successfully discovers
a set of document relations, the quality of which is significantly better than its expecta-
tion. With the human evaluation of sampled document relations, it is confirmed that the
proposed automatic evaluation method based on citation information is a potential approach
to evaluate the quality of document relations. Moreover, an extension of the term weighting
scheme can enhance the quality of discovered document relations, where inverse document
frequency performs well to discover high-valid relations from the collection. Furthermore,
the augmented normalized term frequency can help to discover the good quality relations
in a higher rank while the bigram term frequency performs well in any rank of discovered
document relations.
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Chapter 1

Introduction

Nowadays, it has become difficult for researchers to follow the state of the art in their area of
interest since the number of research publications has increased continuously and quickly.
Such a large volume of information brings about serious hindrance for researchers to po-
sition their own works against existing works, or to find useful relations (or connections)
between them [Kessler, 1963, Small, 1973, Wilkinson and Smeaton, 1999, Bergmark, 2000,
Ganiz et al., 2005]. Although the publication of each work may include a list of related arti-
cles (documents) as its reference (called citation), it is still impossible to include all related
works due to either intentional reasons (e.g., limitation of paper length) or unintentional
reasons (e.g., naı̈vely unknown). Enormous meaningful connections that permeate the liter-
atures may remain hidden.

As stated in [Hetzler, 1997], there are several types of relations among documents, e.g.,
attribute-based relations, document-to-document topological relations, and usage-based re-
lations; but the traditional and well-known one, i.e., content-based relations, is focused on
in this work. So far several approaches have been proposed to utilize information sources
available in the literatures to find these meaningful but unrevealed relations.

Growing from different fields, known as literature-based discovery, the approach of discov-
ering hidden and significant relations within a bibliographic database has become popular
in medical-related fields [Swanson, 1986, Swanson, 1990]. As a content-based approach
with manual and/or semi-automatic processes, a set of topical words or terms are extracted
as concepts and then utilized to find connections between two literatures. Due to the sim-
plicity and practicality of this approach, it was used in several areas in succeeding works
[Gordon and Dumais, 1998, Lindsay and Gorden, 1999, Pratt et al., 1999].

As a so-called citation analysis, expansion of bibliography or citation information in sci-
entific publication can be used to find such relations. In the past decades, citation in-
formation was proved to be useful for several purposes, including measurement of im-
pact factor [Garfield, 1972], characterization of the citation [Redner, 1998, An et al., 2004],
support of browsing citation graph [Lawrence et al., 1999, Chen, 1999] and so forth. For
the task of document relation discovery, two basic properties of citation, called biblio-
graphic coupling [Kessler, 1963] and co-citation [Small, 1973], can be focused upon. Sev-
eral previous works [Egghe and Rousseau, 2002, Garfield, 2001] stated that any two doc-
uments tend to have relation with each other if they are citing one or more documents
in common (bibliographic coupling) or they are both cited by one or more documents in
common (co-citation). Several applications [Nanba et al., 2000, White and McCain, 1989,
He and Hui, 2002, Lin et al., 2003, White, 2003, Rousseau and Zuccala, 2004] successfully
applied these properties for their tasks. A brief but comprehensive survey on automatic link
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generation can be found in [Wilkinson and Smeaton, 1999] However, these works are not
fully automated and have a lot of labor intensive tasks.

Besides citation information, words or terms in a document are potential clues for detecting
relations between the document and other related documents. Also applied in information
retrieval [Salton et al., 1975, Faloutsos and Oard, 1995, Jones and Willett, 1997], text cate-
gorization [Nigam et al., 2000, Yang, 1999, Ruch, 2006, Ehrler et al., 2005] and text clus-
tering [da Silva et al., 2001, Beil et al., 2002, Hung and Wermter, 2003], this word-based or
term-based approach (later called word-based approach) discovers a set of documents with
similar contents (topics) using either word co-occurrences or shared vocabularies. Imitating
techniques in information retrieval (IR), a relation between any two documents can be found
by means of measuring document similarity. Applying the vector space model originally
proposed by Salton et al. [Salton et al., 1975], Furuta et al. [Furuta et al., 1989] presented
a comparative study of the quality of links created between two documents or two parts
in a document by sharing the glossary. Salton et al. [Salton and Buckley, 1991] described
a method to build a set of cross-references for an encyclopedia. Lelu created links using
both similarity and spreading activation [Lelu, 1991]. Later, Allan [Allan, 1997] proposed
a method that exploits differences between the various sub-types of semantic links, and
showed how links associated with these sub-types can be determined and assigned to a pair
of documents or two parts in a document. It should be noted that IR-based methods are
designed to discover relations between only two documents (binary relations).

Similar to IR, text clustering (TC) discovers a set of similar documents, based on some kind
of similarity. However, unlike IR, a discovered document relation may include more than
two documents (n-ary relation). A relation can be assumed if documents are assigned to
the same group. Although TC looks more general than IR, it still has a few limitations
[Glenisson et al., 2003, Ertoz et al., 2003, Moon and Singh, 2005]. First, clustering is de-
signed to deal with a small number of clusters and it is rarely applied to handle a large
number of clusters. Second, most clustering methods assume that an object (in this task, a
document) belongs to only one cluster. Third, the process is computationally expensive if
all potential clusters need to be found in the situation that a document is not limited to only
one cluster. This complexity comes from the fact that all document combinations need to be
explored for any possible relation.

Moreover, there has been little exploration of how to evaluate document relations discov-
ered from text collections. Most works in text mining utilize a dataset, which includes
both queries and their corresponding correct answers, as a test collection. They usually
define certain measures and use them for performance assessment on the test collection.
For instance, classification accuracy is applied for assessing the class to which a document
is assigned in text categorization (TC) [Rosch, 1978], while recall and precision are used
to evaluate retrieved documents with regard to given query keywords in information re-
trieval (IR) [Van Rijsbergen, 1979, Salton and McGill, 1983]. As a more naive evaluation
method, human judgment has been used in more recent works on mining web documents,
such as HITS [Kleinberg, 1999] and PageRank [Page et al., 1998], where there is no stan-
dard dataset. However, this manual evaluation is a labor intensive task and quite subjective.

Compared to TC and IR, the evaluation of discovered document relations is difficult and
complicated. For one reason, the process to prepare correct answers in the test collection
is labor-intensive with an exponential number of candidate relations (a relation may involve
more than two documents) to be evaluated. Moreover, there is a lack of standard criteria for
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evaluating document relations. So far, while there have been several benchmark datasets,
e.g., UCI Repository1, WebKB2, TREC data3, for TC and IR tasks, there is no standard
dataset that is used for this task of document relation discovery.

1.1 Motivations and Goals

The main motivations of this work are to discover the high-quality document relations and
present the trustworthy automatic evaluation for assessing those discovered relations. For the
first motivation, the work focuses on presenting a novel method that applies frequent itemset
mining (FIM) techniques to find n-ary document relations where we can set a minimum
support to avoid exploring all document combinations. By encoding documents as items and
terms as transactions, each frequent pattern is in the form of a set of documents where its
support is introduced by the co-occurring terms. With the frequent itemset mining theory, the
preservation of closure properties in the process of candidate generation can help to avoid the
exponential number of generating all document combinations. Theoretically, the approach of
frequent itemset mining is designed to discover the knowledge on the large-scale databases
where most of the studies focuses to fasten the mining process. This advantage brings a
good exploration to the document relation discovery where the huge amount of documents is
concerned. Although it is possible to apply other approaches, such as clustering technique or
information retrieval, for discovering document relations, the processes of those approaches
are computational expensive and not mainly focused to find the n-ary document relations.

The latter motivation comes from a suspect of the quality of discovered relations. Although
the best way to evaluate the quality of discovered relations is to use human judgment, the
task is excessively time-consuming and labor-intensive. Toward resolving these issues, this
work also proposes a method to use citation information in research publications as a source
for evaluating the discovered document relations. Conceptually, the relations among docu-
ments can be formulated as a subgraph where each node represents a document and each arc
represents a relation between two documents. Based on this formulation, the transitivity of
citation can introduce a huge number of relations between the documents where the docu-
ments need not to be directly cited with each other. Those relations can be assumed to be
the potential document relations which are indirectly defined by the document’s authors, and
they can be used as the trust knowledge for the evaluation. A number of scoring methods
to measure the validity of discovered relations based on the citation information can be set
according to the different decision criteria. Moreover, the results from the human evaluation
are also needed to verify the results from the proposed automatic evaluation.

According to the above motivations, three main goals of this work are:

1. To study how well the word-based approach performs in finding relations among doc-
uments using frequent itemset mining techniques.

2. To propose a method to automatically evaluate the discovered document relations us-
ing a citation graph.

3. To invent a measure for automatic evaluating the quality of the discovered relations.

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
2http://www.webkb.org/
3http://trec.nist.gov/data.html
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1.2 Contributions

There are several contributions in this research as follows.

1. An efficient method for document relation discovery. Using the notion of encoding
database as items and terms as transactions, an efficient approach of extended frequent
itemset mining is proposed to mine the frequent patterns with the modification of
original support definition. Those frequent patterns are assumed to be the document
relations where the relations are introduced by the co-occurring terms.

2. An analysis of document representation that is suitable for document relation discov-
ery. Since there are several schemes to define the terms in the documents, the investi-
gation on document representation is needed for selecting the suitable term definition
and term weighting schemes to well represent the document contents. With the good
document contents, the high-quality document relations can be discovered.

3. A formulation of citation graph as the n-ary relations between the documents. The
citations between documents can be formulated as the citation graph. Furthermore, the
transitive of citations can introduce a huge number of relations between the documents
where the documents need not to be directly cited with each other. Those relations are
assumed to be the potential document relations which are indirectly defined by the
document’s authors, and they can be used as the benchmark.

4. A trustworthy method for automatic evaluation based on the citation information to
judge the quality of discovered document relations. It is a labor-intensive and time-
consuming task to evaluate a large set of document relations by hands, therefore an
automatic evaluation is a promising way to validate the approach of document rela-
tion discovery when the document collections are not specific to be only the standard
corpus. With the notion of citation formulation, the automatic evaluation is proposed
to validate the discovered document relations in both soft and hard decisions. The
trustworthy of the proposed evaluation is also verified by the consistence of the results
with human evaluation.

5. A set of document relations that can be applied to several potential applications.

For the application, the document association networks which reveal the relations among
documents or groups of documents where the relations are specified by the labels that bind
those documents by their common coincident information can be constructed. The document
association network can be illustrated by graph visualization as shown in Figure 1.1. Note
that only the approach to construct the relations among documents and groups of documents
is focused on in this work, the method to label the relations is not taken into consideration.
This novel representation has various contributions to many fields. For example in IR, rather
than representing the search result by a list of individual documents, it can be shown by the
document association networks of those retrieved documents which facilitate in browsing the
desired information. Together with the social document network approach, the associations
among the documents in the same social network (or even across social networks) can be
discovered to produce extensive knowledge.

Moreover, several applications can be implemented using the method of document relation
discovery. Here are the examples of such applications.
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Figure 1.1 An example of document relations

• Automatic related article discovery for literature review and assistant system for article
authoring

• Discovering novel connections or knowledge among similar/different research areas

• Duplicate article detection for publication review system

• Novel search engine when the given query is a set of documents (not only keywords
or a document)

1.3 Thesis Structure

Chapter 2 - Background reviews the current state-of-the-art in both document relation dis-
covery and utilizing citation graph as information for extracting relations.

Chapter 3 - Discovery of Document Relations presents a method for discovering document
relations using frequent itemset mining. By encoding documents as items, and terms in the
documents as transactions, a frequent itemset that we can find will be in the form of a set of
documents which share a large number of terms. To represent documents in the database,
several combinations of term definition and term weighting schemes are explored as the
parameters for extracting high-quality document relations.

Chapter 4 - Evaluation of Document Relations: An Automatic Evaluation proposes a method
to use citation information in research publications as a source for automatically evaluating
the discovered document relations. a series of measures called v-validity is defined on di-
rect/indirect citations formulated by so-called order accumulative citation matrices. More-
over, this work proposes generative probability that is derived from probability theory and
uses it to compute an expected score to capture objectively how good evaluation results are.

Chapter 5 - Experimental Results and Evaluations shows the evaluation results on various
document representations including the comparison with the statistical generative probabil-
ity. However, the results from automatic evaluation are also compared with the results from
human evaluation to confirm the potential of the proposed evaluation method.

Chapter 6 - Experimental Results on Various Term Weighting investigates several exten-
sions of applying term weighting schemes to enhance the quality of discovered document
relations.

Chapter 7 - Conclusions and Future Work contains a summary of the work covered and
conclusions reached. Potential enhancements and future research are discussed.
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Chapter 2

Background

This chapter presents some background which is related to various approaches for document
relation discovery. The topics include several characteristics of relations discovered from
a set of documents especially on the scientific publications. Besides these topics, some re-
lated works on evaluating the document relations are also surveyed and discussed. Since the
frequent itemset mining will be used as a method for document relation discovery, a back-
ground of frequent itemset mining and the traditional problem of association rule mining is
presented in the last section. Two algorithms, Apriori and FP-Tree, are described in more de-
tail including a discussion about their performances. Since the efficient algorithm, FP-Tree,
will be used as a main method to discover document relations in this work, its advantage and
disadvantage are also discussed at the end of this chapter.

2.1 Related Works on Document Relation Discovery

As a citation-based approach, Lawrence et al. [Lawrence et al., 1999] proposed a similar-
ity measure, called CCIDF, based on common citations to judge the relatedness between
articles. Imitating TFIDF in the text-based similarity, the CCIDF corresponds to the multi-
plication of the number of common citation and inverse document frequency. The CCIDF
metric is used by the automatic citation indexing system in the Citeseer. Recently, Rahal et
al. [Rahal et al., 2006] have proposed a method to discover research trends (subject-matter
history, extensions or evolution over time) by analysing semantics hidden in the edges of a
citation graph using association rule mining. By modeling an edge in the citation graph as
a transaction whereas the subjects of the citee and the subjects of the citer are the items in
such a transaction, a set of association rules are mined.

As stated in [Lu et al., 2006], use of citation information to compute relatedness between sci-
entific papers has been studied in the well-known work for citation indexes [Garfield, 1995].
Since citations of other papers are hand-picked by the authors as being related to their re-
search, the reference list of a paper contains information which can be exploited to judge
relatedness. The simplest relation, a direct reference or citation, is likely to occur among
related papers which are published apart in time. It does not occur very frequently among
papers published in the same year or very close in time. Two different citation relations
between papers have been specifically identified and used to calculate similarity, namely co-
citation (two papers referenced by the same paper) and bibliographic coupling (two papers
citing the same paper) [Small, 1973]. Two papers are related by co-citation if they are cited
together by the same paper. Small has studied the co-citation pattern among research papers
and highlights its importance in similarity computation. Co-citation links are often present
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in two related older papers. Two papers are bibliographically coupled, if they reference the
same paper. If two recent papers are published in the same or similar research area, a bib-
liographic coupling pattern is very likely to be found in their reference lists. Bibliographic
coupling and co-citation have been employed to compute similarity between research papers.
But each of them is only suitable for computing similarity in specific cases. For instance,
researchers have used co-citation frequency to compute relatedness between two papers, but
the papers to be judged have to be well cited by other authors for the algorithm to work
properly. Apparently co-citation is not efficient in judging similarity among recent papers
which have not yet had the chance to be cited by many other authors. In terms of the direct
link pattern, if the two papers are published almost at the same time, a direct citation link is
not likely to be found between them, even if their content is related. Similarly, papers which
appeared in the early stages of the development of a research specialty are not good candi-
dates for bibliographic coupling analysis. In our metrics, we do not need to know which of
these citation patterns our papers fall under. All patterns of citation relations are accounted
for by using the citation graph.

As the combination of citation-based and word-based approaches, some works utilized both
citation and word/term information [Wilkinson and Smeaton, 1999, Nanba et al., 2000]. Kostoff
et al. [Kostoff et al., 2001] introduced an approach to combine citation bibliometrics and
text mining (i.e., categorization) for analyzing the impact of an originating research article
on other citing research/application over time along with the pathways through the achieve-
ment. As a more recent work, Lu and his colleague [Lu et al., 2006] proposed a method
to use information of local neighborhood articles of an article to calculate the similarity
between two articles that share some citations under the concept of transitivity, which is
extensively studied in [Bjorneborn, 2004]. Although the citation-based similarity was its
main focus, the work compared its result with that of the word-based similarity. It was
concluded that the word-based approach outperformed the citation-based similarity to some
extent. While most existing works on linking related documents occupied the citation-based
approach, very few works explored the word-based approach that utilizes the content in the
articles to determine the similarity.

Growing from different research field, known as literature-based discovery, the approach of
discovering hidden and significant relations within a bibliographic database has been popu-
lar in medical-related fields since 1986 [Swanson, 1986, Swanson, 1990]. As a word-based
approach with manual and/or semi-automatic process, a set of topical words or terms are
extracted as concepts and then utilized to find a connection among two separate arguments.
Due to the simplicity and practicality of this approach, it was used in several areas by its suc-
ceeding works [Gordon and Dumais, 1998, Lindsay and Gorden, 1999, Pratt et al., 1999]. So
far, although there have been several works on mining relations among concepts in docu-
ments, very few attempts are made to fully automate the process of discovering relations at
the level of documents by exploiting their content words or terms.

2.2 Related Works on Evaluation of Document Relations

The other important issue is related to how to evaluate the discovered results. In general, the
obtained relations can be evaluated based on either subjective measures such as consistency
to human answers [Lu et al., 2006, Padmanabhan and Tuzhilin, 1999, Silberschatz and Tuzhilin, 1995,
Silberschatz and Tuzhilin, 1996] or objective measures such as interestingness, leverage and
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conviction [Rahal et al., 2006, Klemettinen et al., 1994]. While the subjective evaluation
needs a labor-intensive task to provide answers by human, the objective evaluation may
not reflect how much the relations match with human intuition (belief). The background of
those evaluations are reviewed as follows.

In the area of data mining, the evaluation which is usually applied to evaluate the discovered
knowledge is to use the interestingness measures. These measures are calculated based on
the statistical significance of discovered knowledge to the dataset itself or novelty of knowl-
edge to the human intuition. As described in [Rahal et al., 2006], interestingness measures
for the discovered knowledge can fall in one of two classes : objective measures and sub-
jective measures. Objective interestingness measures are data-centric in that they define the
interestingness of a pattern in terms of the data used in the mining process. They also highly
depend on the structure of the patterns. For example, in ARM, the two ubiquitous objective
measures are support and confidence, both of which highlight statistical properties relat-
ing to the discovered rules. Due to the many complexities arising in the pattern discovery
process, objective measures usually discover a large number of patterns and thus fall short
of their purpose (to discover useful and comprehensible knowledge from huge amounts of
data), especially when the notion of interestingness depends on additional factors such as
the decision-maker.

A number of subjective measures [Padmanabhan and Tuzhilin, 1999, Silberschatz and Tuzhilin, 1995,
Silberschatz and Tuzhilin, 1996] have been proposed for the above scenario. In general,
subjective measures endeavor to generate a smaller tailored set of patterns that is poten-
tially more interesting and useful to the pattern examiner. As discussed by Silberschatz
and Tuzhilin [Silberschatz and Tuzhilin, 1996], subjective measures depend on two main
factors to discover patterns, namely, actionability and unexpectedness. Actionability states
that a pattern is considered interesting to the examiner if it calls for action on his or her
behalf. Unexpectedness focuses more on the surprising factor of the pattern with respect
to the examiner (i.e., the degree to which the pattern surprises the examiner). In order
for the unexpectedness factor to be integrated into a subjective measure, a system of be-
liefs [Silberschatz and Tuzhilin, 1996] must be defined first. Such a system would define
the standard knowledge expected by the examiner. The discovery process then captures all
deviations from such standards as unexpected and thus as interesting to the examiner.

In general, beliefs can be either hard or soft. Hard beliefs represent the knowledge that
the examiner is not willing to change even in the light of newly discovered contradictory
evidence; the validity of the discovered patterns and sometimes of the original data is ques-
tioned instead. On the other hand, soft beliefs could be changed by the examiner if sug-
gested by new patterns. A user-defined measure of strength, referred to as the degree of
belief, is usually associated with every belief in the system. A number of subjective in-
terestingness measures for association rules are presented next. Pietracaprina and Zandolin
[Pietracaprina and Zandolin, 2003] use a probabilistic approach to discover unexpected rules
in the form of rule-pairs. Their work is domain independent in that it requires no prior knowl-
edge in the form of beliefs against which the unexpectedness factor is measured. In order
to arrive at the subset of interesting rules, the authors assume the validity of what they re-
fer to as the monotonicity of beliefs which states that if a belief holds on some data with
some degree then it must also hold on large subsets of that data. However, in those works,
it is a question to set the beliefs that are reasonable and general enough for evaluating the
discovered knowledge in the domain of document relations.
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In the work of literature-based discovery, the approach to evaluate the discovered knowledge
from literature-based discovery is not easy as stated in [Ganiz et al., 2005]. It is a multi-
faceted task which requires human judgment and needs some periods of evaluation time.
The systems pose an additional fundamental challenge in evaluation because, if they are
successful, then by definition they are capturing new knowledge that has yet to be proven
useful [Pratt and Yetisgen-Yildiz, 2003]. Evidence supporting the preliminary discoveries
of Swanson [Swanson, 1986] was provided later by medical researchers after the initial dis-
coveries were made by trial and error [Gordon and Lindsay, 1996]. Providing evidence in
support of such discoveries is only one perspective of evaluation. Evaluation can also be
based on the generated results. The correctness of the results returned, often measured as
accuracy and/or precision, is one such metric. Recall is another, which refers to the number
of correct results returned compared to the total number of correct results available. Other
metrics reflect more qualitative aspects of the system, such as complexity of the user inter-
face. For systems whose aim is to support human experts in the discovery process, usability
issues are very important. Finally, the human experts role is still an important evaluation
method for the literature-based discovery systems.

With the more related works on IR, several standard datasets are available to test the pro-
posed techniques. They include both training data and testing data, including the correct
answers with respect to the query as a test collection. They define the performance of
the search strategies through two main measures, i.e., precision and recall. The precision
presents the proportion of retrieved and relevant documents to all the documents retrieved,
while the recall indicates the proportion of relevant documents that are retrieved out of all
relevant documents available. [Van Rijsbergen, 1979, Salton and McGill, 1983].

However, there are some drawbacks of the traditional evaluation method that uses precision
and recall as stated in [Jin et al., 2001]. First, it requires collecting relevance judgments
of human subjects for every document to every query, which is very expensive and time
consuming because of the large size of the text collection. Even though, all TRECs use
the sampling technology [Jones and van Rijsbergen, 1975], i.e., only the union set of the top
100 retrieved documents from different search systems will be accessed by human subjects,
it still needs a large amount of human effort. Second, it relies on human relevance judgment,
which usually is very subjective. It is well known that, quite often people can have different
opinions on whether a document is relevant to a query [Mizzaro, 1999]. Thus, evaluation
of information retrieval systems based on human relevance judgments may be biased by the
human subjects and does not reflect the true performance of systems. Therefore, there is an
attempt in [Jin et al., 2001] to bypass the need for human judgments to evaluate the quality
of the term weighting models used in IR systems. In such work, the meta-scoring scheme
was proposed to judge the goodness of term weightings by analyzing the document vectors.
The measure is quite subjective and heavily depends on the characteristic of the dataset.

To this end, we try to model the automatic evaluation which can be applied to evaluate the
discovered document relations by using trustworthy information. Since there are several ap-
proaches that try to utilize the citation graph for document relation discovery, it is interesting
to take the citation graph into consideration for formulating the evaluation on document re-
lations discovered from the word-based approach. This will be investigated again in a later
chapter.
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2.3 Related Works on Frequent Itemset Mining

In this section, the traditional association rule mining problem will be first introduced and
the frequent itemset mining algorithms will be then described and discussed.

2.3.1 Association Rule Mining

The formal statement of association rule mining was firstly stated in [Agrawal et al., 1993a]
by Agrawal. Let I = I1, I2, ..., Im be a set of m distinct attributes, T be transaction that contains
a set of items such that T ⊆ I,D be a database with different transaction records T s. An as-
sociation rule is an implication in the form of X →Y , where X ,Y ⊆ I are sets of items called
itemsets, and X ∩Y = φ. X is called antecedent while Y is called consequent, the rule means
X implies Y . There are two important basic measures for association rules, support(sup)
and confidence(conf). Since the database is large and users are concerned about only those
frequently occurring items, usually thresholds of support and confidence are pre-defined by
users to drop those rules that are not so interesting or useful. The two thresholds are called
minimum support (minsup) and minimum confidence (minconf), respectively. Additional
constraints of interesting rules also can be specified by the users. The two basic parameters
of Association Rule Mining (ARM) are: support and confidence.

Support of an association rule is defined as the percentage/fraction of records that contain
X ∪Y to the total number of records in the database. The count for each item is increased
by one every time the item is encountered in different transaction T in database D during
the scanning process. It means the support count does not take the quantity of the item into
account. For example in a transaction a customer buys three bottles of beers but we only
increase the support count number of beer by one; in other words, if a transaction contains
an item then the support count of this item is increased by one. Support is calculated by the
following formula:

Support(X ∪Y ) = the number of transactions which contain X∪Y
|T |

From the definition we can see, support of an item is a statistical significance of an associ-
ation rule. If the support of an item is 0.1%, it means only 0.1 percent of the transactions
contain purchasing of this item. The retailer will not pay much attention to such kind of
items that are not bought so frequently. Obviously a high support is desired for more inter-
esting association rules. Before the mining process, users can specify the minimum support
as a threshold, which means they are only interested in certain association rules that are gen-
erated from those itemsets whose supports exceed that threshold. However, sometimes even
though the itemsets are not so frequent as defined by the threshold, the association rules
generated from them are still important. For example, in the supermarket some items are
very expensive, consequently they are not purchased so often as the threshold required, but
association rules between those expensive items are as important as other frequently bought
items to the retailer.

Confidence of an association rule is defined as the percentage/fraction of the number of
transactions that contain X ∪Y to the total number of records that contain X , where if the
percentage exceeds the threshold of confidence an interesting association rule X →Y can be
generated.
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Con f idence(X →Y ) = Support(X∪Y )
Support(X)

Confidence is a measure of strength of the association rules, suppose the confidence of the
association rule X → Y is 80%. This means that 80% of the transactions that contain X also
containY . Similar to ensuring the interestingness of the rules, specified minimum confidence
is also pre-defined by users.

Association rule mining is to find out association rules that satisfy the pre-defined minimum
support and confidence from a given database [Agrawal and Srikant, 1994]. The problem is
usually decomposed into two subproblems. One is to find those itemsets whose occurrences
exceed a predefined threshold in the database, those itemsets are called frequent or large
itemsets. The second problem is to generate association rules from those large itemsets
with the constraints of minimal confidence. Suppose one of the large itemsets is Lk,Lk =
I1, I2, ..., Ik−1, Ik. Association rules with this itemset are generated in the following way: the
first rule is I1, I2, ..., Ik−1 → Ik, and by checking the confidence this rule can be determined as
interesting or not. Then other rules are generated by deleting the last item in the antecedent
and inserting it to the consequent, further the confidences of the new rules are checked to
determine the interestingness of them. Those processes iterate until the antecedent becomes
empty. Since the second subproblem is quite straight forward, most of the researches focus
on the first subproblem.

2.3.2 Traditional Approach

Since association rule mining is a well-explored research area, we will only introduce some
basic and classic approaches for association rule mining. As stated before, the second sub-
problem of ARM is straightforward, most of those approaches focus on the first subprob-
lem (frequent itemset mining; FIM). The first subproblem can be further divided into two
subproblems: candidate large itemsets generation process and frequent itemsets generation
process. We call those itemsets whose support exceed the support threshold, large or fre-
quent itemsets. Those itemsets that are expected or have the hope to be large or frequent
are called candidate itemsets. Most of the algorithms of mining association rules we sur-
veyed are quite similar, the difference is the extent to which certain improvements have been
made, so only some of the milestones of association rule mining algorithms will be intro-
duced. First we will introduce some naive and basic algorithms for association rule mining,
Apriori series approaches. Then another milestone, tree structured approaches, will be ex-
plained. Finally, this section will end with some special issues of association rule mining,
including multiple level ARM, multiple dimension ARM, constraint based ARM and in-
cremental ARM. In order to make it easier for us to compare those algorithms we use the
same transaction database, a transaction database from a supermarket, to explain how those
algorithms work. This database records the purchasing attributes of its customers. Suppose
during the pre-processing step all those attributes that are not relevant or useful to our mining
task are pruned, only those useful attributes are left ready for mining as shown in figure 2.1.

2.3.3 Frequent Itemset Mining Algorithms

In this section, the original Apriori algorithm is introduced to give a clear view of the fre-
quent itemset mining process. However, this algorithm is not efficient enough to deal with
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Figure 2.1 An example of original databases

large databases. Therefore, another more efficient algorithm called FP-Tree is presented and
will be used as an algorithm for document relation discovery in this work. To this end, their
performances are also described and discussed.

Figure 2.2 Apriori mining process

Apriori Algorithm

The Apriori algorithm, a great improvement in the history of association rule mining, was
first proposed by Agrawal in [Agrawal and Srikant, 1994]. The AIS [Agrawal et al., 1993a]
is just a straightforward approach that requires many passes over the database, generating
many candidate itemsets and storing counters of each candidate while most of them turn
out to be not frequent. Apriori is more efficient during the candidate generation process for
two reasons: Apriori employs a different candidates generation method and a new pruning
technique. There are two processes to find out all the large itemsets from the database in the
Apriori algorithm. First the candidate itemsets are generated, then the database is scanned
to check the actual support count of the corresponding itemsets. During the first scanning
of the database the support count of each item is calculated and the large 1-itemsets are
generated by pruning those itemsets whose supports are below the pre-defined threshold as
shown in Figure 2.2(a) and (b). In each pass only those candidate itemsets that include
the same specified number of items are generated and checked. The candidate k-itemsets
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Figure 2.3 Apriori algorithm

are generated after the (k − 1)th passes over the database by joining the frequent k − 1-
itemsets. All the candidate k-itemsets are pruned by checking their sub (k− 1)-itemsets.
If any of its sub (k− 1)-itemsets are not in the list of frequent (k − 1)-itemsets, this k-
itemsets candidate is pruned out because it has no hope to be frequent according to the
Apriori property. The Apriori property says that every sub (k−1)-itemsets of the frequent
k-itemsets must be frequent. Let us take the generation of candidate 3-itemsets as an ex-
ample. First all the candidate itemsets are generated by joining frequent 2-itemsets, which
include (I1, I2, I5),(I1, I2, I3),(I2, I3, I5),(I1, I3, I5). Those itemsets are then checked for their
sub itemsets, since (I3, I5) is not frequent 2-itemsets, the last two 3-itemsets are eliminated
from the list of candidate 3-itemsets as shown in Figure 2.2(e). All those processes are ex-
ecuted iteratively to find all frequent itemsets until the candidates itemsets or the frequent
itemsets become empty. The result is the same as the AIS algorithm. The algorithm is shown
in Figure 2.3. In the process of finding frequent itemsets, Apriori avoids the wasted effort of
counting the candidate itemsets that are known to be infrequent. The candidates are gener-
ated by joining the frequent itemsets level-wisely and candidates are pruned according to the
Apriori property. As a result, the number of remaining candidate itemsets ready for further
support checking becomes much smaller, which dramatically reduces the computation, I/O
cost and memory requirement. Details of the Apriori-gen and GenerateRules functions were
elaborated in [Agrawal and Srikant, 1994]. The Apriori algorithm still inherits the drawback
of scanning whole databases many times. Based on the Apriori algorithm, many new algo-
rithms were designed with some modifications or improvements. Generally there were two
approaches: one was to reduce the number of passes over the whole database or replacing
the whole database with only part of it based on the current frequent itemsets, another ap-
proach was to explore different kinds of pruning techniques to make the number of candidate
itemsets much smaller. Apriori-TID and Apriori-Hybrid [Agrawal and Srikant, 1994] , DHP
[Park et al. 1995], SON [Savesere et al. 1995] are modifications of the Apriori algorithm.
Most of the algorithms introduced above are based on the Apriori algorithm and try to im-
prove the efficiency by making some modifications, such as reducing the number of passes
over the database; reducing the size of the database to be scanned in every pass; pruning
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the candidates by different techniques and using sampling technique. However there are two
bottlenecks of the Apriori algorithm. One is the complex candidate generation process that
uses most of the time, space and memory. Another bottleneck is the multiple scan of the
database.

FP-Tree (Frequent Pattern Tree) Algorithm

To break the two bottlenecks of Apriori series algorithms, some works of association rule
mining using tree structure have been designed. FP-Tree [Han et al., 2000, Han et al., 2004],
frequent pattern mining, is another milestone in the development of association rule mining,
which breaks the two bottlenecks of the Apriori. The frequent itemsets are generated with
only two passes over the database and without any candidate generation process. FP-Tree
was introduced by Han et al in [Han et al., 2000] and [Han et al., 2004]. By avoiding the
candidate generation process and making fewer passes over the database, FP-Tree is an order
of magnitude faster than the Apriori algorithm. The frequent patterns generation process
includes two subprocesses: constructing the FT-Tree, and generating frequent patterns from
the FP-Tree. The process of constructing the FP-Tree is as follows.

(1) The database is scanned for the first time, during which the support counts of each item
are collected. As a result the frequent 1-itemsets are generated as shown in Figure 2.4(b).
This process is the same as in the Apriori algorithm. Those frequent itemsets are sorted
in descending order of their supports and the head table of ordered frequent 1-itemsets is
created as shown in Figure 2.5.

(2) Create the root node of the FP-Tree T with a label of Root. The database is scanned
again to construct the FP-Tree with the head table, for each transaction the order of frequent
items is resorted according to the head table. For example, the first transaction (I1, I2, I5) is
transformed to (I2, I1, I5), since I2 occurs more frequently than I1 in the database. Let the
items in the transaction be [p | P], where p is the most frequent item and P is the remaining
items list, and call the function Insert[p | P]; T.

(3) The function Insert[p | P]; T works as follows. If T has a child N such that N.item-
name=p.item-name then the count of N is increased by 1, else a new node N is created
and N.item-name=p.item-name with a support count of 1. Its parent link is linked to T and
its node link is linked to the node with the same item-name via a sub-link. This function
InsertP;T is called recursively until P becomes empty.

Let’s take the insertion of the first transaction to the FP-Tree as an example to illustrate
the insert function and construction of FP-Tree we mentioned above. After reordering this
transaction is (I2, I1, I5), so p is I2 in this case, while P is (I1, I5). Then we call the function
of insert. First we search and determine whether the node I2 exists in the tree or not and it
turns out I2 is a new node. According to the rules, a new node named I2 is created with a
support count of 1. Since here T is Root, node I2 is linked to Root and we call the insert
function again. At this time p is I1, P is I5, T is I2. The result of the FP-Tree of the database
is shown in Figure 2.5.

The frequent patterns are generated from the FP-Tree by the procedure named FP-growth
[Han et al., 2000, Han et al., 2004]. Based on the head table and the FP-Tree, frequent pat-
terns can be generated easily. It works as shown in Figure 2.6. For example, here is the
whole process of getting all those frequent itemsets concerning I5. Following the head table,
we find the pattern base of this node, which are all those paths which end with this node. For
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Figure 2.4 FP-Tree data transformation

Figure 2.5 Result of FP-Tree

I5, its pattern base is: (I2, I1)(2) and (I2, I1, I3)(1), the number in the bracket following the
itemsets means the support of this pattern. Then the count of all the items in the pattern base
are accumulated, in this case we get I2(3), I1(3) and I3(1). By checking the support count
with the minimal support threshold, the conditional FP-Tree of I5 is generated (I2, I1)(3).
Consequently we generate the frequent itemsets/pattern (I2, I1, I5). The mining result is the
same with Apriori series algorithms.

The efficiency of FP-Tree algorithm is based on three reasons. First, the FP-Tree is a com-
pressed representation of the original database because only frequent items are used to con-
struct the tree, other irrelevant information is pruned. Also, by ordering the items according
to their supports, the overlapping parts appear only once with different support counts. Sec-
ondly, this algorithm only scans the database twice. The frequent patterns are generated
by the FP-growth procedure. Constructing the conditional FP-Tree which contains patterns
with specified suffix patterns, frequent patterns can be easily generated as shown in above
the example. Also the computation cost decreased dramatically. Thirdly, FP-Tree uses a
divide and conquer method that considerably reduced the size of the subsequent conditional
FP-Tree, longer frequent patterns are generated by adding a suffix to the shorter frequent
patterns. In [Han et al., 2000] and [Han et al., 2004], there are examples to illustrate all the
details of this mining process. Every algorithm has its limitations. The FP-Tree is difficult
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Input:
the FP-Tree Tree

Output:
Rt Complete set of frequent patterns

Method: Call FP growth(Tree , null).
Procedure FP-growth (Tree , α)
{
01 if Tree contains a single path P
02 then for each combination (denoted as β) of

the nodes in the path P do
03 generate pattern β∪α with

support = minimum support of nodes in β;
04 else for each ai in the header of Tree do {
05 generate pattern β = ai∪α with

support = ai· support;
06 construct β’s conditional pattern base and then

β’s conditional FP-tree Treeβ;
07 if Treeβ �= φ
08 then call FP-growth (Tree , β) }
}

Figure 2.6 FP-Tree algorithm

to use in an interactive mining system. During the interactive mining process, users may
change the threshold of support according to the rules. However for FP-Tree the changing
of support may lead to repetition of the whole mining process. Another limitation is that
FP-Tree is not suitable for incremental mining. As time goes on databases keep changing
and new datasets may be inserted into the database. Those insertions may also lead to a
repetition of the whole process if we employ the FP-Tree algorithm.

2.4 Related Works on Generalized Frequent Itemset Mining

With the original approach of association rules mining, the discovered knowledge may not
provide desired knowledge in the database. It may be limited with the granularity over the
items. For example, a rule “5% of customers who buy wheat breads, also buy chocolate
milk” is less expressive and less useful than a more general rule “30% of customers who buy
bread, also buy milk”. For this reason, generalized association rule mining (GARM) was de-
veloped using the information of a pre-defined taxonomy over the items. The taxonomy is a
piece of knowledge, e.g., the classification of the products (or items) into brands, categories,
product groups, and so forth. Given a taxonomy where only leaf nodes (leaf items) are pre-
sented in the transactional database, more informative, initiative and flexible rules (called
generalized association rules) can be mined from the database. Each generalized associa-
tion rule contains items from any level of a taxonomy. Similar to ARM, the most important
problem of GARM is how to efficiently find all generalized frequent itemsets, which is the
computational intensive step.
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In the past, there were still few works related to GARM. Most of them focus on the perfor-
mance improvement to mine generalized frequent itemsets. In [Srikant and Agrawal, 1997],
five algorithms named Basic, Cumulate, Stratify, Estimate and EstMerge were proposed.
These algorithms apply the horizontal database and breath-first search strategy like Apriori-
based algorithms [Agrawal and Srikant, 1994]. They use the extended database, constructed
by adding all distinct ancestors of each item existing in its original transaction, to mine all
generalized frequent itemsets. Most methods in GARM exploit some constraints among
itemsets for pruning, and discarding meaningless itemsets, i.e., the itemsets containing both
an item and its ancestor according to the given taxonomy. However, these algorithms waste
a lot of time in multiple scanning of the database even if the sampling method is applied.
As a more efficient algorithm, Prutax [Hipp et al., 1998] applies a so-called vertical data-
base format to reduce the computational time needed for multiple scanning of the data-
base. Instead of “generate and test” as done in previous algorithms, it avoids generating
meaningless itemsets by using hash tree checking. Nevertheless, in Prutax the limitation
is the cost of checking whether their ancestor itemsets are frequent or not by using hash
tree before counting their actual support. There exists a slightly different task for deal-
ing with multiple different minimum support in different levels of itemsets as shown in
[Han and Fu, 1999] and [Lui and Chung, 2000]. A parallel algorithm has also been pro-
posed in [Shintani and Kitsuregawa, 1998]. Some recent applications that utilize a GARM
are shown in [Michail, 2000] and [Hwang and Lim, 2002]. Our preliminary research related
to GARM is shown in [Sriphaew and Theeramunkong, 2002].

In this work, we also introduce a new approach for efficiently finding all generalized fre-
quent itemsets using two types of constraints on two generalized itemset relationships, called
subset-superset and ancestor-descendant. We show that it is sufficient to mine only a small
set of generalized closed frequent itemsets instead of mining a large set of conventional gen-
eralized frequent itemsets. Two algorithms, named SET and cSET, are proposed to efficiently
find generalized frequent itemsets and generalized closed frequent itemsets, respectively.
The details of the algorithms are given in Appendix A.

Although the algorithms of generalized frequent itemset mining are not applied to discover
the document relations in this work, it is a promising approach that can be used to discover
the document relations where the relations express on different granularity of documents.
The problem of document relation discovery can be viewed as a problem of generalized
frequent itemset mining, where the documents are partitioned into small portions or grouped
as the classes and we can find the relations among those portions of documents or classes.
However, this exploration has several parameters and is far beyond the scope of this thesis;
it is then left as the future work.
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Chapter 3

Discovery of Document Relations

In the past, association rule mining (ARM) was well-known as a process to find frequent
co-occurrences (frequent patterns) and high confidence if-then rules (association rules) in a
database [Agrawal et al., 1993b]. As a prominent technique in data mining, it is useful in var-
ious applications such as market basket analysis, fraud detection, data classification, etc. In
the ARM process, frequent itemset mining (FIM) is the most essential task to find frequently
occurring itemsets from a transactional database. In general, the conventional transactional
database is presented in the term of item existences in the transaction. Although most
FIM works deal with this kind of database, there are some attempts to extend the original
framework to be able to assign the weights for items or transactions in the database, called
weighted association rule mining [Cai et al., 1998, Tao et al., 2003, Yun and Leggett, 2006].
In those works, items or transactions are independently weighted with regard to which type
of discovered rules we would like to find. The higher weighted items or transactions will
obtain higher priority for user interests. However, this approach gives a fixed weight to
each item regardless of the transaction in which such item occurs. Then, it does not match
with the application where the weight of an item also depends on the transaction in which
it exists. This chapter introduces a more general concept of frequent itemset mining which
extends from the original FIM to mine frequent itemsets on a database with weighted item-
transaction values. For clarity, the concept is explained using an example that matches with
our purpose to find document relations.

3.1 Extended Frequent Itemset Mining for Document Relation Discovery

document terms
d1 t1, t2, t3, t4
d2 t1, t2, t3, t4
d3 t2, t3
d4 t2, t3, t4

term documents
t1 d1, d2
t2 d1, d2, d3, d4
t3 d1, d2, d3, d4
t4 d1, d2, d4

Figure 3.1 Document-term orientation (left) and term-document orientation (right)

Figure 3.1 shows two possible representations of a database: the document-term and the
term-document orientations. Using different orientations of an attribute-value database as
an input for FIM, different kinds of knowledge will be discovered. For the document-term
orientation, the discovered frequent itemset is a set of highly co-occurring terms in the doc-
uments. Based on this, some text mining approaches were proposed to extract related terms
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d1 d2 d3 d4
t1 1 1 0 0
t2 1 1 1 1
t3 1 1 1 1
t4 1 1 0 1

d1 d2 d3 d4
t1 4 2 0 0
t2 4 2 4 1
t3 2 4 2 2
t4 2 4 0 1

Figure 3.2 Boolean-valued (left) and real-valued (right) databases

from a set of documents [Feldman et al., 1998, Clifton and Cooley, 1999, Nahm and Mooney, 2000,
Theeramunkong, 2004]. For the term-document orientation, the discovered frequent item-
set is prominently changed to be a set of documents which share a large number of terms.
The discovered results can be assumed as a word-based relation among documents where
the relation is introduced by the coincident terms. This point is originally focused upon in
this thesis. A transactional database with boolean (binary) values is generalized to that of
any real (non-binary) values. Figure 3.2 shows two alternative attribute-value databases; the
boolean-valued and the real-valued databases. Here, a real value indicates a weight of an
attribute (item) in the transaction, e.g., a function of how often the attribute appears in the
transaction, or (perhaps) the relative frequency of that attribute in the overall set of transac-
tions. In the field of text processing, the weight can be defined in the form of vector space
model (VSM), introduced by Salton [Salton et al., 1975]. In this case, such weight is defined
by a so-called term frequency of a term in the document. Note that in this work, a transac-
tion corresponds to a term while an item corresponds to a document. Therefore, a “docset”
(document set) is used in place of the term “itemset”, hereinafter.

The formal notation used in the task of FIM for document relation discovery can be defined
as follows. Let D be a set of documents (items) where D = {d1,d2, ...,dm}, and T be a set
of terms (transactions) where T = {t1, t2, ..., tn}. Also, let w(di, t j) represent a weight of a
term t j in a document di. A subset of D is called a docset whereas a subset of T is called a
termset. Furthermore, a docset Xk = {x1,x2, ...,xk} ⊂D with k documents is called k-docset.

Unlike most of FIM works on boolean-valued databases, this work also addresses the issue
of mining frequent docsets from a real-valued database. In the task of mining frequent
docsets, minimum support (a user-specified threshold) is used to filter out the docsets which
have a support lower than this threshold, considered as infrequent docsets. Traditionally,
the support of a docset is defined by a ratio between the number of terms that exist in all
documents in the docset and the total number of distinct terms in a database. To this end, the
support definition for a docset Xk is defined as follows.

sup(Xk) =
∑n

j=1 mink
i=1w(xi, t j)

∑n
j=1 maxm

i=1w(di, t j)
(3.1)

By representing the data to be mined as in Figure 3.2, the new definition of support employs
the min operation to find the weight of each term for a docset by selecting a minimum
weight of the term among all documents in the docset. The max operation is applied for
finding the maximum weight of each term in the database. The support of a docset will then
be calculated from the ratio between the sum of all term weights for a docset and the sum of
maximum weights of all terms in the database.
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d1 d2 d3 d4 min{w(d2, t j),w(d3, t j)} max4
i=1{w(di, t j),w(di, t j)}

t1 1 1 0 0 0 1
t2 1 1 1 1 1 1
t3 1 1 1 1 1 1
t4 1 1 0 1 0 1

sum 4 4 2 3 2 4

d1 d2 d3 d4 min{w(d2, t j),w(d3, t j)} max4
i=1{w(di, t j),w(di, t j)}

t1 4 2 0 0 0 4
t2 4 2 4 1 2 4
t3 2 4 2 2 2 4
t4 2 4 0 1 0 4

sum 12 12 6 4 4 16

Figure 3.3: Example of support calculation on Boolean-valued (upper) and real-valued
(lower) databases where upper: sup({d2,d3}) = 2

4 and lower: sup({d2,d3}) = 4
16

For clarity of explanation, let’s consider the following example. According to the left of
Figure 3.2, all terms in the database appear in d2 while only term t2 and t3 appear in d3.
Assuming that we want to calculate the support of a docset d2d3 using the traditional support
definition, the number of terms that contain d2d3 (i.e., 2) and the total number of terms (i.e.,
4) need to be counted. The support of d2d3 is then equal to 2/4. This support value can also
be calculated in another way as defined in the proposed generalized definition of support
shown in the top of Figure 3.3. Employing the min operation on the weight of each term
between column d2 and d3, the consequent weights for term t1, t2, t3 and t4 are 0, 1, 1 and 0,
respectively. Applying the max operation on the weight of all terms among all documents,
we will get one as the maximum weight for every term. Then, the support is the ratio between
the sum of those minimum weights for d2d3 and the sum of maximum weight of all terms in
the database, i.e., 2/4.

Although such Boolean-valued databases alone can be used to mine the docsets, there still
is another kind of database which contains both term existence and term weighting, namely
a real-valued database, as shown in the right of Figure 3.2. Unfortunately, the traditional
support definition cannot be applied for calculating the support of a docset since it concerns
only the term existence but not the term weight to a docset. To resolve this drawback, it is a
good idea to use an equivalent definition of support as previously proposed. In this case, the
support will represent the total minimum weight of co-occurring terms for all documents in
a docset where each weight represents the importance such terms contribute to the docset.
Each term weight for the docset with two or more documents will be equal to the minimum
weight of the terms among all documents in a docset. This situation is conforming to our
notion to differentiate the level of relations where the specified term weight for a docset
must be lower than or equal to the weight of the terms for any documents in that docset. An
example of support calculation for a docset d2d3 on real-valued database is illustrated in the
bottom of Figure 3.3.

From the above statements, we can conclude that 1) the support value is still the same us-
ing either the traditional support definition or the generalized support definition for support
calculating in a Boolean-valued database, and 2) the generalized support definition can also
be used to calculate the support of any docset in a real-valued database. Using the databases
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docset generalized support
boolean-valued DB real-valued DB

{d1} 4/4 12/16
{d2} 4/4 12/16
{d3} 2/4 6/16
{d4} 3/4 4/16
{d1d2} 4/4 8/16
{d1d3} 2/4 6/16
{d1d4} 3/4 4/16
{d2d3} 2/4 4/16
{d2d4} 3/4 4/16
{d3d4} 2/4 3/16
{d1d2d3} 2/4 4/16
{d1d2d4} 3/4 4/16
{d2d3d4} 2/4 3/16
{d1d2d3d4} 2/4 3/16

Figure 3.4 Docsets and their supports (the boolean-valued v.s. the real-valued databases)

in Figure 3.2, the docsets and their supports, for boolean-valued and real-valued databases,
can be computed as shown in Figure 3.4. Besides support, a so-called confidence is used
for generating confident association rules. Here, the confidence is left since it is beyond the
scope of this work.

Note that this generalized support preserves two closure properties as in [Agrawal et al., 1996],
i.e., a downward closure property (“all subsets of a frequent itemset are also frequent”), and
an upward closure property (“all supersets of an infrequent itemset are also infrequent”). For
example, sup(d1) ≥ sup(d1d2) and sup(d2) ≥ sup(d1d2), if d1d2 is frequent then d1 and d2

are also frequent (downward closure property), and if either d1 or d2 or both of them are
infrequent then d1d2 is also infrequent (upward closure property). The mathematical proof
of closure property is given as follows.

Proof of closure property. Let Xk−1 and Xk be the {k−1}-docset and k-docset, respectively,
where Xk−1 ⊆ Xk. In other words, Xk = Xk−1∪ xk. It suffices to demonstrate that sup(Xk) ≤
sup(Xk−1), i.e., the support of superset docset is less than the support of subset docset. Using
the proposed definition of support, the support of xk−1 is:

sup(Xk−1) =
∑n

j=1 min(w(x1, t j),w(x2, t j), ...,w(xk−1, t j))

∑n
j=1 maxm

i=1w(di, t j)
, (3.2)

where n is the number of all terms and m is the number of all documents in the database.

For a docset Xk, we get

sup(Xk) =
∑n

j=1 min(w(x1, t j),w(x2, t j), ...,w(xk−1, t j),w(xk, t j))

∑n
j=1maxm

i=1w(di, t j)
(3.3)

As present in Equation 3.2 and 3.3, the numerator of the support fraction is changed accord-
ing to which docset is calculated, but its denominator is the same for every docset. Therefore,
only the numerator in the equations is taken into consideration. Comparing with the support
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Figure 3.5 FP-Tree construction for Boolean-valued database in Figure 3.2

of Xk−1, one term w(xk, t j) is added for the min operation in the support of Xk. With the
property of min operation, min(a,b) ≤ min(a)andmin(a,b)≤ min(b) given a,b as any real
numbers. The weight is also a real number, therefore, the numerator of support Xk is less
than the numerator of support Xk−1. Then, we get sup(Xk) ≤ sup(Xk−1).

So far these properties have been applied in most existing FIM algorithms to reduce large
computational time. Applying this modified frequent itemset mining is a promising ap-
proach for efficiently discovering all groups of document relations in a large collection of
documents.

In this work, the FP-Tree algorithm [Han et al., 2000, Han et al., 2004] is used as a method
for discovering the document relations. The algorithm is divided into two tasks, i.e. 1)
FP-Tree construction and 2) FP-growth: mining frequent patterns with FP-Tree by pattern
fragment growth, as described in Section 2.3.3. The Boolean-valued database can be mined
by the original algorithm, but the real-valued database needs some modifications. Let’s con-
sider the example boolean-valued database in Figure 3.2. Using the original algorithm, the
FP-Tree construction after scanning each transaction is shown in Figure 3.5. With the last
constructed FP-Tree, the task of FP-growth will generate all frequent patterns straightfor-
wardly. For a real-valued database as in Figure 3.2, the original FP-Tree algorithm needs
to be modified as follows. In the task of FP-Tee construction, a set of real values in each
transaction is stored with their corresponding items in the FP-Tree nodes when scanning
the database. This extension makes FP-Tree to keep the information of real values that will
be further used in the process of mining frequent patterns. The count of each node in the
tree is accumulated in every transaction scanning. For the FP-growth task, the new defini-
tion of support, which is proposed in Equation 3.1, is employed to find all frequent patterns
from the constructed FP-Tree. The generation is similar to the original algorithm but only
their supports are calculated from the summation of min value between the real-valued of
same transaction of the documents in the candidate patterns. The illustration of extended
algorithm is presented in Figure 3.6.

3.2 Computational Time and Memory Usage

The computational time of the proposed algorithm to discover document relations is quite
close to the computational time of the FP-Tree algorithm. As stated in [Han et al., 2004],
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FP-growth: generating frequent patterns 
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d1d4 = [1st Path] min(4,1)+min(2,2) + [2nd Path] min(2,1) = 4 d1d2d3d4 = min(4,2,4,1)+min(2,4,2,2) = 3 
 

FP-Tree construction 

Figure 3.6: Modified FP-Tree for real-valued database in Figure 3.2: FP-Tree construction
(top) and FP-growth (bottom)

the computational cost for the FP-Tree algorithm is divided into two phases, i.e., the cost for
constructing FP-Tree and the cost for mining frequent patterns. In the first phase, the com-
putational cost of inserting transaction T into the FP-tree is O(| f req(T )|), where f req(T ) is
the set of frequent items in the transactions. The construction needs two scans of a database.
In the latter phase, the modifications of FP-growth slightly affects the time complexity of
an original algorithm. The frequent patterns can be generated using the constructed FP-Tree

with the cost of O(∑n
i=1

|ti|2×α
2 ), where |ti| is the length of the transaction, α is the average

number of real values attached to the FP-Tree nodes, and n is approximated as the number of
transactions. If the number of transaction is large and the length of each transaction is long,
the computation is quite costly. By focusing on the term-document database, the database is
quite dense in comparison with the relational database. However, the average length of trans-
actions is high since a term may appear in several documents. This phenomenon will affect
the computational time of the second phase to generate the frequent patterns. Although the
computational time of an algorithm is not a main study in this work, some investigations on
the exact computational time is presented in Chapter 5.

However, there is another advantage of FP-Tree algorithm which is suitable for our approach.
With its highly compact structure to store all information for frequent-patterns, the memory
usage of the algorithm is less than or equal to the database size. Since there are often a lot of
sharing of frequent items among transactions, the size of the FP-Tree is usually much smaller
than its original database, and hence, small memory is used for handling such tree. This is
very useful when we implement on a large-scaled document collection. Furthermore, it can
be extended for adaptive learning without re-scanning the database when the new documents
are added to the database.
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Figure 3.7 A framework of document relation discovery

3.3 Framework of Document Relation Discovery

In this thesis, a framework to discover the document relations is presented by utilizing the
extended frequent itemset mining approach as shown in Figure 3.7. From the figure, there are
three main processes for document relation discovery. First, a collection of documents will
be encoded by several document representation models. This process produces an attribute-
value database that can represent whole document contents in the collection. Second, the
document relations can be discovered from such an encoded database using the extended
frequent itemset mining. In the last process, the approaches of knowledge representation
and visualization can be applied to utilize the discovered relations on the specific application,
e.g., document relationship network or search engine. The thesis will focus on the first and
the second processes while the last processes are left as the future work. However, the
quality of discovered document relations is a mandatory issue to study since it is necessary
to judge the performance of the model used for encoding the documents in the first process.
The hypothesis of this thesis is that:

“By encoding a collection of documents as attribute-value database, the document relations
can be discovered using the extended frequent itemset mining approach. The quality of dis-
covered document relations depends on how to encode a collection of documents. There are
two main factors for representing the documents in the database, i.e., term definition and
term weighting. Moreover, each factor also contains various schemes, and the combination
of those schemes can produce several types of document representation. The suitable com-
binations of term definition and term weighting schemes can increase the performance of
discovered document relations.”

By this hypothesis, the following problems arise:

1. What are the possible factors used in the document representation model?

2. What is the suitable document representation model used for encoding the documents
to provide the high-quality document relations?

3. How to judge the quality of discovered document relations?
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Toward resolving these problems, the thesis studies several schemes that can be used as
document representation including the method to evaluate the quality of discovered docu-
ments. The document representations that are suitable for document relation discovery will
be investigated in the experiments.

3.4 Document Representation

Most traditional works on text processing, including IR and TC, showed that a bag of individ-
ual words alone is not good enough for representing the content of a text [Feldman et al., 1998,
Rajman and Besançon, 1998]. Several enhancements have been proposed to provide more
suitable representation via term definition and term weighting. Let’s consider the following
example. Supposing that the three documents A, B and C are the scientific publications,
the common terms that are usually found in the publications, e.g., “introduction”, “related
work”, “proposed method”, “conclusion”, etc., may occur in those documents. Obviously,
these terms are too general and domain-independent, i.e., they do not convey the specific
contents to the documents. With the extended frequent itemset mining approach, ABC will
probably have high support and becomes frequent pattern, but it can not be judged as a good
document relation. Toward resolving this problem, the concept of document representation
used for encoding the term-document database is investigated. With the suitable document
representation, the good terms for well representing the document contents can be defined
with term definition schemes, and the level of contribution for each term in the document
can be set by the term weighting schemes.

In this section, three schemes of term definition, i.e., word-level n-gram, stemming, and
stopword removal, and three schemes of term weighting are described. In the database point
of view, the first three schemes are used for defining attributes while the last three schemes
involve how to assign a value to those attributes in an attribute-value database.

3.4.1 Term Definition

The content of a document can be represented by a set of words inside that document. How-
ever, different sets of words provide different levels of how well they can represent all con-
tents in a document. The term definition is an approach to select the appropriate sets of
terms for representing the document contents. There are three main factors for term defini-
tion, i.e., n-gram, stemming and stopword removal. The details of each factor are described
as follows.

1. N-gram
For the first factor, several n-gram representations can be applied to define the terms
in a document collection. It is well-known [Baeza-Yates and Ribeiro-Neto, 1999] that
single words in a text, called unigram (1-gram), may not be good enough to represent
semantics of the text due to an ambiguity of individual words. Therefore, a higher
word-level n-gram can be applied. For the word-level n-gram, a term is defined by a
set of any consecutive n words. In this work, only unigram and bigram representations
are preliminarily taken into account. Therefore, we can classify the n-gram factor as
follows.
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(a) unigram defines a term as an individual word in the document contents.

(b) bigram defines a term from any consecutive two words in the document contents.

(c) other n-gram, there are the other n-gram representation where n is higher than
two (higher than bigram). Although it is possible to apply a higher n-gram for
defining the terms, the exponential growth of the number of terms may cause a
problem for the mining process. Therefore, we have a trick for selecting only
bigrams that contain no stopword.

For example, given a part of a text “.. data mining and artificial intelligence ..”, a set of
unigrams, say “data”, “mining”, “and”, “artificial” and “intelligence” can be extracted.
By bigram representation (2-gram), the following terms will be obtained i.e., “data
mining”, “mining and”,“and artificial” and “artificial intelligence”. It is obvious that
some bigrams contain stopwords and provide less meaning than the pure bigrams that
do not have stopwords. Therefore in this work, only the bigrams without stopwords
are selected as the term definition, i.e., “data mining” and “artificial intelligence” in
this case.

2. Stemming

(a) non-applying stemming leaves the term as it is originally defined without stem-
ming.

(b) applying stemming is an approach for reducing inflected (or sometimes derived)
words to their stem, base or root form, generally a written word form. The Porter
stemming algorithm [Porter, 1980] is used in this work since it is already embed-
ded as a feature in the BOW [McCallum, 1996] text processing tool. The details
of the algorithm are given in Appendix B.

3. Stopword removal

(a) non-applying stopword removal will not filter any terms from the extracted terms.

(b) applying stopword removal is an approach to filter out the words or terms which
are contained in a set of English stoplists. The stoplist of SMART system [Rocchio, 1971]
which contains 524 English common words are used in this work since it is al-
ready applied to the BOW toolkit [McCallum, 1996]. The complete list of stop-
words is presented in Appendix B.

Combination of term definition schemes

As an objective of this work, we investigate the combination of the three schemes for term
definition. By assumption, some schemes may affect the other schemes which results in
different characteristics of discovered document relations. In this work, the combinations of
the three term definition factors which will be investigated are shown in Table 3.1.

In the table, each term definition scheme is expressed as a triplet. The first item represents
the n-gram representation, where ‘U’ stands for unigram and ‘B denotes bigram. The second
item states whether stemming is applied or not, where either ‘X’ or ‘O’ are used to express
the non-applying and applying, respectively. In the last item, the applying of stopword
removal is also expressed by either ‘X’ or ‘O’ in the encoding pattern.
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Table 3.1: Term definition schemes and their encoding patterns expressed as triplets: {n-
gram}, {stemming} and {stopword removal}.

Encoding Term definition scheme
Pattern n-gram stemming stopword removal
UXX unigram non-applying non-applying
UOX unigram applying non-applying
UXO unigram non-applying applying
UOO unigram applying applying
BXX bigram non-applying non-applying
BOX bigram applying non-applying
BXO bigram non-applying applying
BOO bigram applying applying

3.4.2 Term Weighting

A document can be viewed as a vector in a vector space model [Salton et al., 1975]. In this
representation, each element in the vector is equivalent to a unique term associated with
its weight. The term weighting is applied to set a level of contribution of each term to the
document. Each term weighting can be described by the combinations of three factors, i.e.,
term frequency, collection frequency and vector normalization. The details of each factor
are shown below.

1. Term frequency
For the first factor, term frequency, there are three alternative principal components as
follows.

(a) binary term frequency: bf is nothing more than 1 for term presence and 0 for term
absence in a document. This factor was already implemented in the previous
experiments in all cases of term definition schemes.

(b) occurrence term frequency: tf is the number of occurrence of term in a document.
In other words, this is usually called term frequency (tf).

(c) augmented normalized term frequency: antf is defined by 0.5+ 0.5× t f/t f max
where t fmax is the maximum term frequency in a document. This compensates
for relatively high term frequency in the case of long documents and normalizes
term frequency to lie between 0.5 and 1.0.

2. Collection frequency
In case a term frequently occurs in many documents, using tf alone for finding docu-
ment relations may have little discriminative power. The collection frequency factor is
then used for term discrimination. The best terms for identifying document contents
are those which able to distinguish certain individual documents from the remainder
of the collection. Two principal components for the collection frequency factor are
shown as follows.

(a) no collection frequency is defined by the multiplier of 1 to the other factors of
term weighting.
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(b) inverse document frequency: (idf) is defined as log( N
nj

), i.e., the log of the inverse
of the fraction of documents in the whole set that contain term j, where N is the
total number of documents and n j is the number of documents in which a term j
is assigned. The idf favors terms that occur in relatively few documents.

3. Vector normalization
The document length also affects the discovered relations since the longer documents
are more likely to be relevant, as they are more likely to contain co-occurring terms.
Therefore, the vector normalization factor is another important factor to represent a
document. The document should be treated as equally important regardless of the
document length. There are two alternative components as follows.

(a) no normalization is defined by the multiplier of 1 to the other factors of term
weighting.

(b) cosine normalization is defined by the ratio of current term weight and a factor
representing Euclidean vector length.

(c) maximum weight normalization is defined by the ratio of current term weight and
a maximum term weight.

It is not necessary to equalize the unit length of document vectors. Indeed, the nor-
malization can be applied to a whole term weighting or just a part of term weighting.
For example, if the term weighting is tf × idf , the normalization can be either tfrms or
(tf × idf )rms. This difference is interesting to study the outcomes when a large vari-
ety of vector normalization will be applied. Note that, the rms of a value stands for
the root mean square of that value in a document which is coincident with cosine nor-

malization. For example, given a document with m terms, tfrms is defined by
√

∑m
i=1 t f 2

i
m .

Combination of term weighting schemes

Several approaches on IR and TC [Jones, 1972, Salton and Yang, 1973, Wu and Salton, 1981,
Yu et al., 1982, Salton and Buckley, 1988, Buckley, 1993, Zhang and Nguyen, 2005] succeeded
in applying term weighting in several arithmetic forms. In those works, the term frequency
and inverse document frequency are the prominent components used for setting a level of
contribution and importance of a term to a document. However, there is an uncertainty of
the combination on term weighting schemes that provide the best term weighting in identi-
fying the document contents and are suitable for discovering document relations. Therefore,
several combinations of term weighting schemes in Section 3.4.2 are studied in this chapter.

There are several combinations of the three term weighting factors, but some weighting
schemes do not make sense to apply with the other schemes. For example, binary term fre-
quency is meaningless to apply with cosine normalization (since the normalization is always
one), or it is unnecessary to exploit the normalization to the augmented term frequency. To
this end, the interesting term weighting schemes that will be explored in our experiments are
selected as shown in Table 3.2.

In the table, each term weighting scheme is expressed as a triplet. The first item represents
the usage of term frequency, where ‘b’ stands for binary term frequency, ‘t’ denotes the oc-
currence term frequency and ‘a’ means augmented normalized term frequency. The second
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Table 3.2: Term weighting schemes and their encoding patterns expressed as triplets: {term
frequency}, {collection frequency} and {normalization}.

Encoding Term weighting scheme Equation
Pattern term collection normalization

frequency frequency
bxx bf non-applying non-applying bf
bix bf idf non-applying bf × idf
txx tf non-applying non-applying tf
tix tf idf non-applying tf × idf
txc tf non-applying cosine tf

tf rms

txm tf non-applying max tf tf
tf max

tic tf idf cosine tf
tf rms

× idf

tim tf idf max tf tf
tf max

× idf

axx antf non-applying non-applying 0.5+0.5 tf
tf max

aix antf idf non-applying
(
0.5+0.5 tf

tf max

)
× idf

item shows whether the collection frequency is applied or not, where ‘i’ means idf is ap-
plied while ‘x’ signifies no collection frequency and multiply such term weighting scheme
by 1. The last item indicates which normalization scheme is used, where ‘x’ is no normal-
ization, ‘c’ represents cosine normalization and ‘m’ means maximum weight normalization.
For example, ‘aix’ represents a term weighting scheme using augmented normalized term
frequency, idf and no normalization.

3.5 Mining on Attribute-Value Database: Some Examples

Table 3.3 Example attribute-value database for illustrating document relation discovery

d1 d2 d3 d4 d5
t1 5 4 2 0 0
t2 0 2 0 0 0
t3 3 2 3 0 0
t4 1 0 0 6 0
t5 2 0 1 0 0
t6 4 5 0 8 3
t7 4 0 0 0 0

For clarity, the approach of applying extended frequent itemset mining on attribute-value
database, the sample calculations on a term-document database are illustrated in this section.

Given the database as shown in Table 3.3 , di is a document and t j is a term that appears in a
document where i and j are positive integers. Each nominal value in the table represents the
term frequency of a term t j in the specific document di called w(di, t j). Using this database,
the calculations of document relations and their supports regarding to the concept in Section
3.1 can be applied on several term weighting schemes as follows.
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Chapter 4

Automatic Evaluation of Document Relations

To evaluate the discovered document relations, this work presents an evaluation method to
show the effectiveness of our technique. In the automatic evaluation, we use a citation graph,
and evaluate our system based on its ability to find the relations that exist in the citation
graph. In the manual evaluation, we confirm that some models of our approach can discover
the relations which are highly coincident with human intuition.

Although human judgment is the best method for evaluation, it is a labor-intensive and time-
consuming task. Therefore, the method for automatic evaluation using citation graph is a
good alternative for evaluating the word-based model for document relation discovery. To
accomplish the automatic evaluation method, firstly we define a citation graph and how to
use it to evaluate, and secondly we discuss the evaluation by humans and the evaluation by
the citation graph.

Intuitively, two documents are expected to be related under one of three basic situations: (1)
one document cites to the other (direct citation), (2) both documents cite to the same docu-
ment (bibliographic coupling) [Small, 1973] and (3) both documents are cited by the same
document (co-citation) [Kessler, 1963]. An analysis of citation has been applied for several
applications [White and McCain, 1989, Nanba et al., 2000, Rousseau and Zuccala, 2004].

Besides these basic situations, two documents may be related to each other via a more com-
plicated concept called transitivity. For example, if a document A cites to a document B, and
the document B cites to a documentC, then one could assume a transitive relation between A
and C. In this work, with the transitivity property, the concept of order citation is originally
proposed to express an indirect connection between two documents. With the assumption
that a direct or indirect connection between two documents implies a topical relation be-
tween them, such connection can be used for evaluating the results of document relation
discovery.

In the rest of this chapter, introductions of the u-th order citation and v-th order accumu-
lative citation matrix are given. Then, the validity is proposed as a measure for evaluating
discovered docsets using information in the citation matrix. Finally, the expected validity is
mathematically defined by exploiting the concept of generative probability and estimation.
The approach of human evaluation will be discussed again in the next chapter.
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Figure 4.1 An example of a citation graph

4.1 The Citation Graph and Its Matrix Representation

Conceptually citations among documents in a scientific publication collection form a citation
graph, where a node corresponds to a document and an arc corresponds to a direct citation
of a document to another document. Based on this citation graph, an indirect citation can
be defined using the concept of transitivity. The formulation of direct and indirect citations
can be given in the terms of the u-th order citation and the v-th order accumulative citation
matrix as follows.

Definition 1 (the u-th order citation): LetD be a set of documents (items) in the database.
For x,y∈D , y is the u-th order citation of x iff the number of arcs in the shortest path between
x to y in the citation graph is u (≥ 1). Conversely, x is also called the u-th order citation of
y.

For example, given a set of six documents d1,d2,d3,d4,d5,d6 ∈D and a set of six citations,
d1 to d2, d2 to d3 and d5, d3 to d5, and d4 to d3 and d6, the citation graph can be depicted
in Figure 4.1. In the figure, d1, d3 and d5 is the first, d4 is the second, and d6 is the third
order citation of the document d2. Note that although there is a direction for each citation,
it is not taken into account since the task is to detect a document relation where the citation
direction is not concerned. Moreover, using only textual information without explicit citation
or temporal information, it is difficult to find the direction of the citation among any two
documents.

Based on the concept of the u-th order citation, the v-th order accumulative citation matrix
is introduced to express a set of citation relations stating whether any two documents can be
transitively reached by the shortest path shorter than v+1.

Definition 2 (the v-th order accumulative citation matrix): Given a set of n distinct doc-
uments, the v-th order accumulative citation matrix (for short, v-OACM) is an n×n matrix,
each element of which represents the citation relation δv between two documents x, y where
δv(x,y) = 1 when x is the u-th order citation of y and u≤ v, otherwise δv(x,y) = 0. Note that
δv(x,y) = δv(y,x) and δv(x,x) = 1.

For the previous example, the 1-, 2- and 3-OACMs can be created as shown in Figure 4.2.
The 1-OACM can be straightforwardly constructed from the set of the first-order citation
(direct citation). The (v + 1)-OACM (mathematically denoted by a matrix Av+1) can be
recursively created from the operation between v-OACM (Av) and 1-OACM (A1) according
to the following formula.
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doc. d1 d2 d3 d4 d5 d6
d1 1 1 0 0 0 0
d2 1 1 1 0 1 0
d3 0 1 1 1 1 0 1-OACM
d4 0 0 1 1 0 1
d5 0 1 1 0 1 0
d6 0 0 0 1 0 1

doc. d1 d2 d3 d4 d5 d6
d1 1 1 1 0 1 0
d2 1 1 1 1 1 0
d3 1 1 1 1 1 1 2-OACM
d4 0 1 1 1 1 1
d5 1 1 1 1 1 0
d6 0 0 1 1 0 1

doc. d1 d2 d3 d4 d5 d6
d1 1 1 1 1 1 0
d2 1 1 1 1 1 1
d3 1 1 1 1 1 1 3-OACM
d4 1 1 1 1 1 1
d5 1 1 1 1 1 1
d6 0 1 1 1 1 1

Figure 4.2 The 1-OACM (top), 2-OACM (middle) and 3-OACM (bottom)

av+1
i j = ∨n

k=1(a
v
ik ∧a1

k j) (4.1)

where ∨ is an OR operator, ∧ is an AND operator, av
ik is the element at the i-th row and the

k-th column of the matrix Av and a1
k j is the element at the k-th row and the j-th column of

the matrix A1. Note that any v-OACM is a symmetric matrix.

4.2 Validity: Quality of Document Relations

This section defines the validity which is used as a measure for evaluating the quality of the
discovered docsets. The concept of validity calculation is to investigate how documents in
a discovered docset are related to each other according to the citation graph. Based on this
concept, the most preferable situation is that all documents in a docset directly cite to and/or
are cited by at least one document in that docset, and thereafter they form one connected
group. Since in practice only a few references are given in a document, it is quite rare and
unrealistic that all related documents cite to each other. As a generalization, we can assume
that all documents in a docset should cite to and/or are cited by each other within a specific
range in the citation graph. Here, the shorter the specific range is, the more restrictive the
evaluation is. With the concept of v-OACM stated in the previous section, we can realize
this generalized evaluation by a so-called v-th order validity (for short, v-validity), where v
corresponds to the specific range mentioned above.

Regarding the criteria of evaluation, two alternative scoring methods can be employed for
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defining the validity of a docset. As the first method, a score is computed as the ratio of the
number of citation relations in which the most popular document in a docset contains to its
maximum. The most popular document is a document that has the most relations with the
other documents in the docset. Note that, it is possible to have more than one most popular
document in a docset. The score calculated by this method is called soft validity.

In the second method, a more strict criterion for scoring is applied. The score is set to 1 only
when the most popular document connects to all documents in the docset. Otherwise, the
score is set to 0. This score is called hard validity. The formulation of soft v-validity and
hard v-validity of a docset X (X ⊂D), denoted by Sv

S(X) and Sv
H(X) respectively, are defined

as follows.

S v
S(X) =

maxx∈X(∑y∈X ,y�=x δv(x,y))
|X |−1

(4.2)

For simplicity, we denote a numerator in Equation 4.2 with maxv(X), i.e., maxv(X) =
maxx∈X(∑y∈X ,y�=x δv(x,y)). Then,

S v
H(X) =

{
1 , if maxv(X) = |X |−1
0 , otherwise

(4.3)

Here, δv(x,y) is the citation relation defined by Definition 2 in Section 4.1. It can be observed
that the soft v-validity of a docset is ranging from 0 to 1, i.e., 0 ≤ S v

S(X) ≤ 1 while the hard
v-validity is a binary value of 0 or 1. In both cases, the v-validity achieves the minimum (i.e.,
0) when there is no citation relation among any document in the docset. On the other hand,
it achieves the maximum (i.e., 1) when there is at least one document that has a citation
relation with all documents in a docset. Intuitively, the validity of a bigger docset tends to
be lower than a smaller docset since the probability that one document will cite to and/or be
cited by other documents in the same docset becomes lower.

In practice, instead of an individual docset, the whole set of discovered docsets needs to
be evaluated. The easiest method is to exploit an arithmetic mean. However, it is not fair
to directly use the arithmetic mean since a bigger docset tends to have lower validity than
a smaller one. We need an aggregation method that reflects docset size in the summation
of validities. One of reasonable methods is to use the concept of weighted mean, where
each weight reflects the docset size. Therefore, soft v-validity and hard v-validity for a set
of discovered docsets F , denoted by SS

v(F ) and SH
v(F ), respectively, can be defined as

follows.

SS
v(F ) =

∑X∈F wX ×S v
S (X)

∑X∈F wX
(4.4)

SH
v(F ) =

∑X∈F wX ×S v
H(X)

∑X∈F wX
(4.5)

where wX is the weight of a docset X . In this work, wX is set to |X |−1, the maximum value
that the validity of a docset X can gain. For example, given the 1-OACM in Figure 4.2 and
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F = {d1d2,d1d2d4}, the set soft 1-validity of F (i.e., SS
1(F )) equals to

(1× 1
1 )+(2× 1

2 )
1+2 = 2

3

while the set hard 1-validity of F (i.e., SH
1(F )) is

(1× 1
1 )+(2×0)
1+2 = 1

3 .

The evaluation based on soft validity will focus on the probability that any two documents
in a docset will occupy a valid relation. On the other hand, the evaluation based on hard
validity will concentrate on the probability that at least one docset must have valid relations
with all of the other documents. The soft validity states that how many valid relations in a
set of discovered docsets based on the citation graph, while the hard validity identifies that
how many perfect relations are there in a set of discovered relations based on citation graph.
In this case, the perfect relation means the docset in which there is at least one document
in the docset that contains valid relations with all of the other documents in that docset.
Comparing between these two evaluation criteria, the hard validity is more restrictive than
the soft validity, and the hard validity will always be lower than the soft validity in the same
set of discovered docsets.

4.3 The Expected Validity

From Equations 4.2 and 4.3, the evaluation of discovered docsets will depend on the citation
relation (δv), which is represented by v-OACMs. As stated in the previous section, the lower
v is, the more restrictive the evaluation becomes. Therefore to compare the evaluation based
on different v-OACMs, we need to declare a value, regardless of the restriction of evaluation,
to represent the expected validity of a given set of docsets under each individual v-OACM.
This section describes the method to estimate the theoretical validity of the set of docsets
based on probability theory. Towards this estimation, the probability that two documents are
related to each other under a v-OACM (later called base probability), needs to be calculated.
This probability is derived by the ratio of the number of existing citation relations to the

number of all possible citation relations in an OACM (i.e., 2×
(|D|

2

)
= |D|2−|D|) as shown

in the following equation.

pv =
∑x,y∈D,x�=yδv(x,y)

|D|2−|D| (4.6)

For example, using the citation relation in Figure 4.2, the base probabilities for 1-, 2-, and
3-OACMs are 0.40 (12/30), 0.73 (22/30) and 0.93 (28/30), respectively. Note that the base
probability of a higher-OACM is always higher than or equal to that of a lower-OACM.
Using the concept of expectation, the expected set v-validity (E(S v(F ))) can be formulated
as follows.

E(S v(F )) = E(
∑X∈F wX ×S v(X)

∑X∈F wX
) (4.7)

Since wX and S v(X) are independent, therefore

E(S v(F )) =
∑X∈F E(wX)×E(S v(X))

∑X∈F E(wX)
(4.8)

Since wX is a constant of |X |−1, the formula is then reduced to
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E(S v(F )) =
∑X∈F wX ×E(S v(X))

∑X∈F wX
(4.9)

E(S v(X)) = ∑
∀Yi,Yi∈β(X)

(S(Yi)×Pv(Yi)) (4.10)

where E(S v(X)) is the expected v-validity of a docset X , β(X) is the set of all possible cita-
tion patterns for X , S(Yi) is the invariant validity ofYi, and Pv(Yi) is the generative probability
of the pattern Yi estimated from the base probabilities under v-OACM (pv). Theoretically,
finding possible patterns of a docset can be transformed to the set enumeration problem.

Given a docset with the length of k (k-docset), there are 2(k
2) possible citation patterns.

With different scoring methods, an invariant validity is individually defined on each criteria
regardless of the v-OACM. To simplify this, the notation S(Yi) is replaced by SS(Yi) and
SH(Yi) for the invariant validity calculated from soft validity and hard validity, respectively.
Similar to Equation 4.2, an invariant validity of Yi for soft validity is defined as follows:

SS(Yi) =
maxx∈Yi(∑y∈Yi,y�=x δYi(x,y))

|Yi|−1
(4.11)

For simplicity, we denote a numerator in the above equation by maxYi(Yi). With another case
derived from Equation 4.3, an invariant validity of Yi based on hard validity is given by:

SH(Yi) =
{

1 , if maxYi(Yi) = |Yi|−1
0 , otherwise

(4.12)

In the above equations, δYi(x,y) is the citation relation between two documents x, y in the
citation pattern Yi where δYi(x,y) = 1 when citation relation exists, otherwise δYi(x,y) = 0.
Note that allYi’s have the same docset but represent different citation patterns. The following
shows two examples of how to calculate the expected v-validity for 2-docsets and 3-docsets.
For simplicity, the expected v-validity based on soft validity is firstly described, and the one
based on hard validity is discussed later.

With the simplest case, there are only two possible citation patterns for a 2-docset. There-
fore, the expected v-validity based on soft validity of any 2-docset (X ) can be calculated as
follows.

E(S v
S(X)) =

1
1

pv +
0
1
(1− pv) = pv (4.13)

In the case of a 3-docset, there are eight possible patterns as shown in Figure 4.3. From
Equation 4.11, we can calculate the invariant validity based on soft validity (SS) of each
pattern as follows. The first to fourth patterns have the invariant validity of 1 (i.e., 2

2). The
fifth to seventh patterns gain the invariant validity of 0.5 (i.e., 1

2 ) while the last pattern occu-
pies the invariant validity of 0 (i.e., 0

2). The generative probability of the first pattern is p3
v

since there are three citation relations, and that of the second to the fourth patterns equals to
p2

v(1− pv) since there are two citation relations and one missing citation relation. Regarding
the citation pattern, the generative probabilities of the other patterns can be calculated in the

40



Figure 4.3 All possible citation patterns for a 3-docset

same manner. Applying Equation 4.10 and the generative probabilities shown in Figure 4.3,
the expected v-validity based on soft validity can be calculated as follows.

E(S v
S(X)) = 1(

2
2

p3
v)+3(

2
2

p2
v(1− pv))+3(

1
2

pv(1− pv)2)+1(
0
2
(1− pv)3) (4.14)

Here, the first term comes from the first pattern, the second term is derived from the second
to the fourth patterns, the third term is obtained by the fifth to the seventh patterns and the
last term is for the eighth pattern.

With another criterion of hard validity, the expected v-validity for a 2-docset is still the same
but a difference occurs for a 3-docset. By Equation 4.12, the invariant validity based on hard
validity (SH) equals to 1 for the first to fourth patterns and becomes 0 for the other patterns.
The expected v-validity for a 3-docset based on hard validity is then reduced to

E(S v
H(X)) = 1(1× p3

v)+3(1× p2
v(1− pv)) (4.15)

All above examples illustrate the calculation of the expected validity of only one docset. To
calculate the expected v-validity of several docsets in a given set, the weighted mean of their
validities can be derived by Equation 4.9. The outcome will be used as the expected value
for evaluating the results obtained from our method for discovering document relations.

The pseudo-code for calculating the expected validity of a k-docset is given in Figure 4.4.
This is the calculation for any docset with a specific k length. Given a specific k length, the
algorithm starts from generating all binary relations, each of which links any two documents
in a k-docset. In total,

(
k
2

)
binary relations will be generated as a set Ak. All combinations

of binary relations in Ak will be enumerated by a set enumeration and kept into βk. For each
element in βk, the network from a set of binary relations can be formulated, and the maxi-
mum degree of node (document) will be selected as the max value. With a different scoring
method, the invariant validity can be defined where the invariant soft validity is defined as
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Input: k (length of a docset to find its expected validity)
pv (base probability under v-OACM)

Output: Expected validity of a k-docset
Method: Call Cal ExpVal(k, pv).

Procedure Cal ExpVal(k, pv)
{
01 Ak = all binary relations for a k-docset:

(
k
2

)
;

02 βk = all enumerated combinations of binary relations in Ak (2(
k
2))

03 E=0;
04 For each element Yi ∈ βk {
05 Formulating network from a set of binary relations Yi;
06 max = maximum degree of node in a citation network;
07 if it is evaluated based on soft validity
08 then S(Yi) = max; //invariant soft validity
09 if it is evaluated based on hard validity
10 then if max = k−1
11 then S(Yi) = 1 else S(Yi) = 0; //invariant hard validity
12 n = ‖Yi‖; //number of binary relations in Yi

13 Pv(Yi) = pn
v × (1− pv)(

k
2)−n; //generative probability

14 E + = S(Yi)×Pv(Yi); }
15 output E; //expected validity of a k-docset
}

Figure 4.4 Pseudo-code for calculating the expected validity of a k-docset under v-OACM

max value, but the invariant hard validity is defined to be 1 when max value is equal to the
number of documents in a docset minus one, otherwise it becomes 0. Next, the generative
probability is estimated by the multiplication of citation probabilities in the network based
on the given pv, base probability under v-OACM. Finally, the expected validity of a docset
is then calculated by the summation of the multiplications between invariant validity and
generative probability of each citation pattern in βk.
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Chapter 5

Experimental Results and Evaluations

This chapter presents a set of experimental results when the quality of discovered docsets is
investigated under several empirical evaluation criteria. The four main objectives are (1) to
investigate characteristics of the evaluation by soft validity and hard validity on docsets dis-
covered from different document representations including their minimum support thresh-
olds and mining time, (2) to study the quality of discovered relations when using either direct
citation or indirect citation as the evaluation criteria, (3) to present the relative quality of a
discovered relation when it is compared to its statistical expected value, and (4) to show the
quality of discovered relations evaluated by humans and compare the results with those from
the proposed evaluation method.

Towards the first objective, several term definitions are explored in the process of encoding
the documents. To define terms in a document, techniques of n-gram, stemming and stop-
word removal can be applied. In this experiment, binary term weighting is the preliminary
focus. The discovered docsets are ranked by their supports, and then the top-N ranked re-
lations are evaluated using both soft validity and hard validity. Here, the value of N can
be varied to observe the characteristic of the discovered docsets. For the second objective,
the evaluation is performed based on various v-OACMs, where the 1-OACM considers only
direct citation while a higher-OACM also includes indirect citation as shown in Chapter 4.
Intuitively, the evaluation becomes less restricted when a higher-OACM is applied as the
calibration. To fulfill the third objective, the expected set validity for each set of discovered
relations is calculated according to the method shown in Section 4.3. Compared to this ex-
pected validity, the significance of discovered docsets is investigated. In the last objective, a
set of discovered relations is sampled and evaluated by letting a number of experts rate the
relatedness of documents in each relation. The result can be used to confirm the potential of
our proposed evaluation method.

5.1 Experimental Setting

In this section, the construction of evaluation material and the characteristics of dataset are
first described. After that, the preprocessing step for extracting terms from a document
collection including the environments of the experiments are presented.

5.1.1 Evaluation Material

There is no gold standard dataset that can be used for evaluating the results of document
relation discovery. To solve this problem, an evaluation material using a citation graph is
formulated during the process of constructing the dataset. The dataset used in this work is
a collection of scientific research publications retrieved from the ACM Digital Library. The
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scientific publications and their citation information are iteratively collected as test data. By
encoding the scientific publications as an attribute-value database, the document relations
between the publications can be discovered by the extended frequent itemset mining as de-
scribed in this work. During the process, the collected citation information can be formulated
as the evaluation criteria for assessing the quality of discovered document relations. By this
simple construction approach, it can be implemented on any collection of documents for
discovering document relations and validating the quality of those relations. In this part, the
detail of our dataset construction is described and the characteristics of the dataset used in
the experiments, including the examples of publications and their citation information, are
presented. Note that although the construction method is specific to this dataset, it is simple
to apply it to other document collections.

Dataset Construction

Following the CCS (Computer Classification System1), three classes in computer related
fields: Class B:Hardware, Class E:Data and Class J:Computer, are selected as three search
keywords. Using the search engine of the ACM Digital Library2 and giving the class as a
query, the relevant documents can be retrieved, ordered by their relevancies to the class. For
each of the three classes, the top 200 publications are collected as a seed in the dataset. In
total, there are 600 publications at the beginning. For each publication, the PDF file format
and its information page which identifies the citation (or reference) information are gathered.
The reference publications appearing in those 600 publications are further collected and
added into the dataset. In the same way, the publications referred to by these newly collected
publications are also gathered and appended into the dataset. With three iterations, there are
totally 10,817 publications used as a test collection. Some examples of publications and
their references can be found in Appendix C.

With the use of the information page attached to each publication, the citation graph can be
constructed and used for evaluating the discovered docsets. To control the characteristics
of the citation graph which will influence the value of expected validity, only the citations
between two publications where both of them present in our dataset are included in the
citation graph. The 1-OACM can be encoded from this citation graph and then used to
construct the 2-OACM and 3-OACM.

After converting these collected publications to ASCII text format, the reference (normally
found at the end of each publication text) is removed by a semi-automatic process, such as
using clue words of “References” and “Bibliography”. This operation makes the approach
of document relation discovery fair to retrieve the high-quality relations with blind citation
information. This dataset is now ready to use in any word-based approach for document
relation discovery.

Characteristic of Dataset

There are two aspects of the dataset characteristics, i.e., term definition and citation. The
characteristic in the aspect of term definition presents the number of terms in the datasets
when several term definition schemes are applied. The characteristic in the aspect of cita-
tion shows the number of citation relations which are present in several OACMs that were
constructed based on citation information of documents in the dataset.

1http://www.acm.org/class/
2http://www.portal.acm.org
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Table 5.1 The number of terms in the dataset for each term definition patterns

Encoding Term Definition Number of Number of Number of
Pattern Unigram/ Stemming Stopword all terms distinct terms distinct terms

Bigram removal with tf > 1 with tf > 2
(*AVG)

UXX Unigram X X 466,424 110,132 71,394 (43.00)
UXO Unigram X O 463,664 108,161 69,686 (27.95)
UOX Unigram O X 397,825 87,850 55,360 (52.40)
UOO Unigram O O 395,630 86,234 53,941 (33.83)
BXX Bigram X X 7,151,014 1,133,020 588,131 (4.69)
BXO Bigram X O 3,866,543 544,315 283,673 (1.90)
BOX Bigram O X 5,352,994 953,786 508,797 (5.54)
BOO Bigram O O 2,875,442 472,209 253,440 (2.23)

*AVG is the average number of documents per term (number of items per transaction)

Table 5.2 The number of citation relations of the dataset in each OACM

1-OACM 2-OACM 3-OACM
Total number of citation relations 83,945 1,600,507 11,020,918
Average number of citation relations per document 8 148 1,020
Maximum number of citation relations for a document 239 1,155 6,102
Minimum number of citation relations for a document 2 2 2

• Characteristic in the Aspect of Term Definition

The value ‘X’ in the table means non-applying such term weighting schemes while
the value ‘O’ means applying. The number of distinct terms with tf > 1 indicates the
number of distinct terms where those terms have tf greater than 1, and the number
of distinct terms with tf > 2 means the number of distinct terms where those terms
have tf greater than 2. This illustration shows that the number of terms is dramatically
reduced when we filter out the terms with low tf. Note that in our experiments, only
the terms with tf > 2 are used as the document representation due to the limitation
of the mining engine and the overwhelming number of insignificant terms. As shown
in Table 5.1, the average length of transactions for bigram cases is approximately 10
times lower than those for unigram cases. This phenomenon is affected from our
process in selecting only bigrams that contain no stopwords as stated in Section 3.4.1.
The number of bigrams is dramatically reduce from the exponential number to the
linear number when compared with unigrams. As a result, the computational time of
mining in the bigram cases will not grow exponentially when the larger number of
document relations is considered.

• Characteristic in the Aspect of Citation

Note that the number of citation relations are counted based on the existing relations
where both citer (cite from) and citee (cite to) documents are contained as their nodes
and existed in the dataset.
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5.1.2 Preprocessing Step

Together with text preprocessing, the BOW library [McCallum, 1996] is used as a tool for
constructing a document-term database. Using a list of 524 stopwords [Salton and McGill, 1986],
common words, such as a, an, is and for, are discarded. Besides these stopwords, terms with
very low frequency are also omitted. These terms are numerous and usually negligible.
Moreover, a term occurring less than three times is considered to be insignificant and thus
pruned. By this process, the number of terms is dramatically reduced by a factor of 7 to 13.
For instance, in the case of applying non-stemming, stopword removal and bigram, the num-
ber of terms reduces from 3,866,543 to 283,673 terms. From our observation, the remaining
terms in a document still preserve the content of the document. In the case of using bigrams
as terms, all bigrams are first generated from the original text, and then the bigrams which
contain stopwords or have low frequency are pruned. This process will help us to generate
pairs of consecutive words, e.g., compound nouns, without the insertion of stopwords.

5.1.3 Environments

To implement a mining engine for document relation discovery, the FP-tree algorithm, orig-
inally introduced in [Han et al., 2000], is modified to mine docsets in both binary-valued
and real-valued databases as described in Chapter 3. In this work, instead of association
rules, frequent itemsets are considered. Since a 1-docset contains no relation, only the dis-
covered docsets with at least two documents are taken into account. The experiments were
performed on a Pentium IV 2.4GHz Hyper-Threading with 1GB physical memory and 2GB
virtual memory running Linux TLE 5.0 as an operating system. The preprocessing steps,
i.e., n-gram construction, stemming and stopword removal, consume negligible computa-
tional time.

5.2 Results from Automatic Evaluation

As stated at the beginning of this chapter, several term definitions can be used as factors
to obtain various patterns of document representation. In our experiment, eight distinct
patterns of term definitions are explored. Each pattern is expressed as a triplet. The first
item represents the usage of n-gram, where ‘U’ stands for unigram and ‘B’ means bigram.
The second item has a value of either ‘O’ or ‘X’, expressing whether the stemming scheme is
applied or not. Also the last item is either ‘O’ or ‘X’, telling us whether the stopword removal
scheme is applied or not. For example, ‘UXO’ means document representation generated by
unigram, non-stemming and stopword removal. In this chapter, the binary term frequency is
mainly focused on as the term weighting scheme.

5.2.1 Evaluation based on 1-OACM

Table 5.3 expresses the set 1-validity (soft validity/hard validity) of the discovered docsets
when various document representations are applied. The minimum support and the execu-
tion time of mining for each document representation to discover a specified number of top-N
ranked docsets are also given in the table. From the table, some interesting observations can

46



Table 5.3: Set 1-validity for various top-N rankings of discovered docsets, their supports
and mining time: soft validity/hard validity (upper: bigram, lower: unigram), MINSUP:
MINIMUM SUPPORT (× 10−2) TIME: MINING TIME (SECONDS)

Set Validity (%)
N BXO BOO BXX BOX
1000 45.47/43.95 46.14/44.33 6.29/6.29 7.09/7.09

MINSUP=0.53,TIME=174.49 MINSUP=0.67,TIME=155.92 MINSUP=3.94,TIME=442.95 MINSUP=4.76,TIME=402.14

5000 29.31/23.88 29.13/27.24 3.83/3.33 3.88/3.59
MINSUP=0.35,TIME=188.88 MINSUP=0.47,TIME=166.96 MINSUP=3.15,TIME=612.82 MINSUP=3.79,TIME=570.65

10000 24.49/19.33 24.40/20.50 3.13/2.33 3.20/2.63
MINSUP=0.32,TIME=189.52 MINSUP=0.39,TIME=170.17 MINSUP=2.84,TIME=681.40 MINSUP=3.42,TIME=627.61

50000 19.29/ 6.36 18.88/ 8.62 2.46/0.98 2.36/1.19
MINSUP=0.25,TIME=195.39 MINSUP=0.29,TIME=176.48 MINSUP=2.31,TIME=816.43 MINSUP=2.71,TIME=767.25

100000 19.51/ 3.67 18.40/ 4.11 2.30/0.63 2.18/0.77
MINSUP=0.21,TIME=212.14 MINSUP=0.28,TIME=176.57 MINSUP=2.13,TIME=862.84 MINSUP=2.48,TIME=832.77

Average 27.61/19.64 27.39/20.96 3.60/2.71 3.74/3.05
MINSUP=0.33,TIME=192.08 MINSUP=0.42,TIME=169.22 MINSUP=2.87,TIME=683.29 MINSUP=3.43,TIME=640.08

Set Validity (%)
N UXO UOO UXX UOX
1000 3.88/3.78 2.36/2.26 2.79/2.79 1.76/1.76

MINSUP=32.72,TIME=122.49 MINSUP=46.35,TIME=74.77 MINSUP=55.61,TIME=160.98 MINSUP=74.78,TIME=89.39

5000 3.77/3.35 2.38/1.99 2.37/2.28 1.55/1.48
MINSUP=26.98,TIME=240.57 MINSUP=40.04,TIME=175.72 MINSUP=48.46,TIME=359.18 MINSUP=66.84,TIME=198.16

10000 3.47/2.63 2.16/1.53 2.09/1.75 1.35/1.11
MINSUP=24.68,TIME=312.69 MINSUP=37.63,TIME=231.41 MINSUP=45.66,TIME=466.00 MINSUP=63.76,TIME=277.67

50000 2.78/1.44 1.75/0.74 1.68/0.84 1.12/0.49
MINSUP=19.95,TIME=478.97 MINSUP=32.26,TIME=412.79 MINSUP=39.64,TIME=808.61 MINSUP=57.08,TIME=539.55

100000 2.71/1.02 1.68/0.48 1.66/0.57 1.14/0.32
MINSUP=18.37,TIME=564.65 MINSUP=30.40,TIME=531.10 MINSUP=37.40,TIME=1008.38 MINSUP=54.55,TIME=691.02

Average 3.32/2.44 2.06/1.40 2.12/1.64 1.38/1.03
MINSUP=24.54,TIME=343.87 MINSUP=37.34,TIME=285.16 MINSUP=45.35,TIME=560.63 MINSUP=63.40,TIME=359.16

be made. First, with the same document representation, soft validity is always higher than
or equal to hard validity since the former is obtained by less restrictive evaluation than the
latter (see Equation 4.2 and 4.3). Both validities involve valid relations between any pair of
documents in a discovered docset. A relation between two documents is called valid when
there is a link between those two documents under the v-OACM (v=1 in this experiment).
The evaluation based on soft validity focuses on the probability that any two documents in a
docset will occupy a valid relation. On the other hand, the evaluation based on hard validity
concentrates on the probability that at least one docset must have valid relations with all of
the other documents. For example, in the case of top-100000 ranking with the ‘BXO’ repre-
sentation (as shown in Table 1), 19.51% of the relations in the discovered docsets are valid
while only 3.67% of the discovered docsets are perfect, i.e., there is at least one document
that contains valid relations with all of the other documents in the certain docset. Second,
in every document representation, both soft validity and hard validity become lower when
more ranks (i.e., top-N ranking with a larger N) are considered. As an implication of this
result, our proposed evaluation method indicates that better docsets are located at higher
ranks. Third, given two representations, say A and B, if the soft validity of A is better than
that of B, then the hard validity of A tends to be higher than that of B. Fourth, the results

47



Table 5.4: The set 1-validity for each docset length when the top-100000 ranking is consid-
ered. Each cell indicates soft validity/hard validity, as well as the number of docsets (in the
bracket)

Docset BXO BOO UXO UXX
length

2 10.86/10.86 11.21/11.21 1.83/1.83 1.31/1.31
(40,870) (38,553) (64,326) (55,262)

3 14.00/4.54 17.35/6.01 3.32/0.35 1.97/0.15
(30,679) (26,174) (33,489) (40,934)

4 20.73/2.05 19.20/1.98 5.09/0.00 1.07/0.00
(10,759) (18,593) (2,181) (3,798)

5 24.40/0.62 21.59/0.66 6.25/0.00 0.00/0.00
(8,004) (13,084) (4) (6)

6 27.07/0.17 24.61/0.09
(5,266) (3,519)

7 28.83/0.04 41.31/0.00
(2,835) (71)

8 30.60/0.00 45.24/0.00
(1,168) (6)

9 32.67/0.00
(347)

10 35.19/0.00
(66)

11 38.33/0.00
(6)

%Set
validity 19.51/3.67 18.40/4.11 2.71/1.02 1.66/0.57

of the bigram cases (‘B**’) are much better than those of the unigram cases (‘U**’). One
reason is that the bigrams are quite superior to the unigrams in representing the content of
a document. Fifth, in the cases of bigram, the stopword removal process is helpful while
the stemming process does not help much. Sixth, in the cases of unigram, non-stemming
is preferable while the stopword removal process is not useful. Finally, the performance of
‘BXO’ and ‘BOO’ is comparable and much higher than ‘BOX’ and ‘BXX’, while the per-
formance of ‘UXO’ is much higher than the other unigram cases. However, on average, the
‘UXX’ seems to be the second best case for the unigram. Since the soft validity is more
flexible than the hard validity, a higher soft validity is preferable. Although performance of
‘BOO’ seems to be slightly better than ‘BXO’ in the higher ranks, ‘BXO’ performs better on
average. In our task, the performance for bigram is ‘BXO’ > ‘BOO’ and the performance
for unigram is ‘UXO’ > ‘UXX’.

In terms of minimum support and computation time, we can conclude as follows. First, since
a docset discovered from the bigram cases tends to have a lower support than the unigram
cases, it is necessary to set a small minimum support in order to obtain the same number
of docsets. Second, the cases with stopword removal run faster than ones without stopword
removal since they consider fewer words. Moreover, they tend to have a lower minimum
support.

As a more detailed exploration of these four best cases, the soft validity and the hard validity
as well as the number of discovered docsets for each docset length are investigated. The re-
sult of the top-100000 ranking is shown in Table 5.4. Due to the space limitation, the results
of the other top-N rankings are omitted but they perform in similarly characteristics. From
the table, some interesting characteristics are observed: (1) the number of bigger docsets
is smaller, (2) compared to the unigram, the bigram produces bigger docsets, (3) in most
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cases, the soft validity of bigger docsets is higher than that of smaller ones, while the hard
validity of bigger docsets is lower than that of smaller ones. These observations reflect a
good characteristic of the evaluation and match with our expectation.

5.2.2 Evaluation based on 1-, 2- and 3-OACMs
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Figure 5.1: Set validity based on the 1-, 2- and 3-OACMs when various top-N rankings of
discovered docsets are considered: soft validity (left) and hard validity (right)

Besides 1-OACM, the discovered docsets can be evaluated with the criteria of 2-OACM
and 3-OACM. In this assessment, only the four best representations, two from the unigram
cases (‘UXO’ and ‘UXX’) and two from the bigram cases (‘BXO’ and ‘BOO’), are taken
into consideration. Figure 5.1 displays the soft validity (the left graph) and the hard validity
(the right graph) under 1-, 2-, and 3-OACMs. Since the minimum support and mining time
in each case are the same as shown in Table 5.3, they are omitted from the figure. In the
figure, we use the notation to represent the evaluation of docsets under the specified OACM
where those docsets are discovered from a specific document representation. For example,
‘3:BXO’ means the evaluation of docsets under 3-OACM where the docsets are discovered
by encoding document representation using the BXO scheme (bigram, non-stemming and
stopword removal). Being consistent for both soft validity and hard validity, the set 3-validity
(one calculated under the 3-OACM) of discovered docsets is higher than the set 2-validity
(one calculated under the 2-OACM), and in the same way the set 2-validity is much higher
than the set 1-validity (one calculated under the 1-OACM). Compared to the evaluation using
only direct citation (1-OACM), more relations in the discovered docsets are valid when both
direct and indirect citations (2- and 3-OACMs) are taken into consideration.

Similar to 1-OACM, ‘BXO’ and ‘BOO’ are comparable and perform as the best cases for
both soft validity and hard validity under the same OACM. Moreover, in the cases of bigram
evaluated under the 1- and 2-OACMs, the set validity drops remarkably when the top-N
rankings with a larger N are focused upon. The quality of docsets in the higher rank (smaller
N) outperforms that of the lower rank. This outcome implies that our evaluation based on
direct/indirect citations seems to be a reasonable method for assessing docsets. For all types
of document representation, the bigram cases perform better than the unigram cases when
they are evaluated under the same v-OACM. Especially the cases under 3-OACM, where
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both two bigram cases (‘3:BXO’ and ‘3:BOO’) are almost 100% valid while two unigram
cases (‘3:UXO’ and ‘3:UXX’) are approximately 50% valid. This phenomenon shows the
advantage of bigram in being a good document representation for discovering document
relations where the documents in each relation are likely to cite other documents under the
specific range within citation graph. Furthermore, the performance gap between bigram and
unigram becomes smaller when top-N rankings with a larger N are considered. For a top-N
ranking with a larger N, the bigram cases tend to have bigger docsets than the unigram cases
and then obtain lower validity since naturally a bigger docset is likely to have lower validity.

5.2.3 Actual Validity vs. Expected Validity

In the next experiment, the evaluation is made to investigate the relative quality of discovered
docsets against the expected validity. As stated in Section 4.3, to compare the evaluation
based on different v-OACMs, the expected validity can be calculated for each individual
v-OACM. To do this, the expected set validity is calculated with respect to Equation 4.9.
Using Equation 4.6, the base probabilities under 1-, 2-, and 3-OACMs (p1, p2 and p3) for
our collection are 6.26×10−4, 1.36×10−2 and 9.41×10−2, respectively. Due to the space
limitation, only the investigations of ‘BXO’ and ‘UXO’ are shown here, but the other cases
are similar to these two cases. The actual set validity gained from the experiments, the
expected set validity calculated from Equation 4.9 and their ratio are displayed in Table 5.5
and Table 5.6, for soft validity and hard validity, respectively. The ratio expresses the quality
of the discovered docsets compared to its expected validity.

From Tables 5.5 and 5.6, the quality of discovered docsets is significantly high, compared
to the expected validity. In principle, the expected validity of a lower-OACM is always
lower than or equal to that of a higher-OACM. For our collection, the expected validity of
2-OACM is approximately 20-22 times higher than that of 1-OACM, while the expected
validity of 3-OACM is about 7-9 times higher than that of 2-OACM. Incidentally, this figure
is obtained for both soft validity and hard validity. Although it seems that we gain a low
set validity for a lower-OACM, if we compare that validity to its expected validity, we will
find out that the ratio is considerably large. That is, the discovered docsets are eligible. For
instance, focusing on the top-1000 ranking, although we gained approximately 4% for both
soft validity and hard validity under the 1-OACM with the unigram (‘UXO’), it corresponds
to 60 times over the expected validity. Under the same condition, for the 2- and 3-OACM,
we obtained approximately 19 and 6 times over the expected validity, respectively. In the
case of bigram (‘BXO’) and under the 1-, 2- and 3-OACMs, the ratios are approximately
676, 65 and 10, respectively, for soft validity, while they raise to approximately 754, 74 and
11, respectively, for hard validity.

By comparing the result to the expected validity, the evaluations under different v-OACMs
become comparable with fair evaluation. Although the set validity of discovered docsets
under a lower-OACM is low, it may be relatively high compared to the expected validity. In
Table 5.5 and 5.6, although the order of the set validities for different OACMs is 3-OACM
> 2-OACM > 1-OACM for given discovered docsets, the order of their ratios is 1-OACM >
2-OACM > 3-OACM. This result indicates that although the proposed method gains a low
value of the set validity for 1-OACM, the result value is quite good compared to the expected
value.
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Table 5.7: Criteria for selecting pairs of documents as the sample document relations for
hypothesis testing

Characteristic of citation relation that Number of selected
exists between two documents under document relations
1-OACM 2-OACM 3-OACM√ √ √

100
X

√ √
100

X X
√

100
X X X 100

5.3 Results from Human Evaluation

Undoubtedly, the expected relations from word-based approach must be consistent with hu-
man intuition. As a word-based relation, the discovered docset will indicate a group of pub-
lications which contains similar topical content in some reasonable aspects. For example, a
publication of “Revealing topic-based relationship among documents using association rule
mining, Sriphaew K. and Theeramunkong T.” may relate with other publications concerned
with association rule mining in the aspect of an algorithm to be used, and may relate with
the publications focusing on information retrieval in the aspect of finding relationship among
documents. However, the judgment of relatedness among those publications is subjective to
the user. It is varied depending on the user opinion. Therefore, the most reliable way to
judge the effectiveness of discovered relations is by setting the human evaluation.

In this section, we present a set of experiments based on human evaluation to measure the
relatedness among publications in the document relations. Based on our assumption that
each discovered relation has high probability to exist in the citation graph, we then validate
the co-relation between the property of measurement used for automatic evaluation and the
subjective measurement given by humans. This observation has an interesting contribution
in which we can avoid the labor-intensive and time-consuming task of human evaluation by
using an alternative automatic evaluation method based on a citation graph for validating the
discovered relations. Two studies of the observation are: (1) how important is the citation
graph in representing the relatedness among publications based on human intuition, and
(2) how likely is the relatedness given by humans on the document relations discovered
from different document relations and the validity calculated from the automatic evaluation.
Based on these issues, two experiments are implemented as follows.

5.3.1 Human Evaluation on Citation Information

Using citation information as a criteria for evaluating the discovered relations is a new ap-
proach of evaluation. However, belief in this criteria is still a question and affects to the trust
in measurement based on it. To clarify this issue, we set an experiment to investigate the
co-relation between the citation information and the desired relations that have been found
by human. In the experiment, relatedness on the document relations when those relations
are present or absent in the citation graph is assigned by human evaluators. The results can
show the significance of difference in the relatedness between the document relations that
are present in the citation graph and those not in the citation graph.
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Table 5.8: Average relatedness (± standard deviation) given by four human evaluators on
selected document relations

Average relatedness
Document relations Document relations do not F-statistic p-value
exist in v-OACM exist in v-OACM

1-OACM 78.40 (±23.60) 43.33 (±35.19) 8.56 0.006
2-OACM 74.20 (±25.67) 30.00 (±30.86) 24.25 0.000
3-OACM 66.13 (±28.55) 10.00 (±17.88) 33.87 0.000

A set of document pairs is selected for this experiment. Based on the criteria for selecting
the pairs in Table 5.7, the pairs of documents with different characteristics of citation re-
lations under each OACM are randomly selected for evaluation. For example, in the first
row of the table, one hundred pairs of documents which contain citation relations under 1-
, 2- and 3-OACMs (δv among those two document in OACM is equal to 1) are randomly
selected without replication. In total, four hundred pairs of documents are selected as the
sample relations according to the given characteristics of citation relations under 1-OACM,
2-OACM and 3-OACM. To indicate the relatedness of each document relation, four experts
holding Ph.D. degrees in computer science or engineering were asked to assign scores for
those selected relations in random order and without repetitions. The experts carefully read
the documents in a document relation one by one and assigned a score for their relatedness.
The degree of relatedness is classified into three ordinal scales; 0% for ‘not related’, 50%
for ‘somewhat related’, and 100% for ‘related’. To determine the statistical significance of
differences between automatic evaluation using a citation graph and human evaluation, we
formulate the following null hypothesis:

H0: For a citation graph under each v-OACM, the human will not assign a degree of relat-
edness for a set of discovered relations in which their relations exist in the v-OACM signifi-
cantly differs from another set in which their relations do not exist in the v-OACM.

Table 5.8 shows the summary of the average relatedness ± standard deviation (sd) given by
the experts for each v-OACM. There are two groups of discovered relations to be considered,
i.e., relations exist in the v-OACM and relations do not exist in the v-OACM. As shown in
the table, the average of relatedness for relations that exist in the v-OACM are higher than
that of relations that do not exist in the v-OACM for every case of v-OACM.

Furthermore, a one-way analysis of variance (ANOVA) technique is applied to test the sta-
tistical difference of relatedness given by humans between a group of relations that exist in
the v-OACM and another group that does not exist in the v-OACM. The results of analysis
are shown in Table 5.8 with the F-statistic and p-value. The F-statistic is the ratio of two
estimations of a population variance based on the information in two groups. It provides
a test for the statistical significance of the observed differences between the means of two
groups (i.e., relations exist in the v-OACM and relations do not exist in the v-OACM). The
p-value is a measure of how much evidence we have against the null hypothesis. From the
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table, we can conclude against the null hypothesis that there are significant differences in
the group of relations that exist in the v-OACM and another group that do not exist in the
v-OACM at the 100% confidence intervals (p-value=0.000) for 2-OACM and 3-OACM and
the 94% confidence intervals (p-value=0.006) for 1-OACM.

This conclusion confirms that our proposed evaluation method to use citation information
under v-OACM is a comparable method to represent human intuition in assessing the relat-
edness of discovered relations. Some may argue that the sample relations for the significant
analysis might be too small for making a conclusion. Therefore, we will also show the com-
parison between the result gained from human and automatic evaluation in the experiments
to confirm a usefulness of the proposed automatic evaluation method.

5.3.2 Human Evaluation and Quality of Discovered Document Relations

In this experiment, we evaluate the quality of discovered docsets with the answers from hu-
man evaluators. Since it is a time consuming task to judge the quality of discovered docsets
by hand, it is worth finding an automatic method to judge the quality of discovered docsets.
Although the automatic evaluation method to use citation information was already presented
in this work and used to evaluate the discovered docsets, it is necessary to confirm the con-
clusions made by the automatic evaluation again by using human evaluation. Therefore, we
present this experiment.

Some discovered docsets from each top-N ranked docsets are systematically selected as rep-
resentative samples. One docset from each chunk of one hundred ranked docsets is selected.
Thus, we get 10, 50 and 100 docsets as the samples for top-1000, top-5000 and top-10000
ranked docsets, respectively. With the limitation of a labor-intensive task, we investigate
the docsets discovered from two cases, i.e., ‘BXO’ and ‘UXO’. Therefore, 320 docsets in
total are selected for human judgment. The approach of indicating the relatedness to each
docset is similar to the previous experiment where the degree of relatedness is one of the
three scales; 0% for ‘not related’, 50% for ‘somewhat related’, and 100% for ‘related’.

The percentages of average relatedness given by four experts are shown in Table 5.9. This
result is consistent with the result from the proposed automatic evaluation method. Although
the set validity cannot exactly reflect the relatedness of document relations, its value can dis-
tinguish the the performance difference between a high quality set and a low quality set of
discovered relations. From the table, there are two interesting observations. First, the re-
sults from the bigram case (‘BXO’) are better than those from the unigram case (‘UXO’)
for any top-N rankings. Second, the results show that better docsets can be discovered in
the higher ranks rather than the lower ranks. Although only the average relatedness scores
are shown here, the individual evaluation result obtained from each expert also preserves the
performance order, i.e., ‘BXO’ has a higher relatedness score than ‘UXO’ and the higher
rank has a higher relatedness score than the lower rank. These results support that the pro-
posed evaluation method has high potential for using as an alternative method for evaluating
the discovered docsets in order to avoid labor-intensive and time-consuming tasks in human
evaluation. It is also noted that the set validity is lower than the relatedness score in every
case. This phenomenon shows that our automatic evaluation method does not overestimate
the quality of document relations.

54



Table 5.9: Average relatedness (± standard deviation) given by human evaluation and set 1-
validity from automatic evaluation on samples of document relations discovered from ‘BXO’
and ‘UXO’ schemes

Average relatedness %Set 1-validity
N #Samples from human evaluation from automatic evaluation

BXO UXO BXO UXO
1000 10 77.08 (±15.05) 21.25 (±10.31) 36.36 2.85
5000 50 48.25 (±18.96) 16.00 (±10.23) 29.31 2.00

10000 100 34.46 (±18.04) 12.17 (± 7.79) 19.66 1.33

5.3.3 Error Analysis

In the previous experiments, we found that some rules are invalid document relations with
regard to some v-OACMs. To check their validity, we investigate the reason why this phe-
nomenon occurs. We found that a set of documents in these invalid document relations
contains one of the following characteristics.

• Those documents are the same articles which appear in various versions of publica-
tions or they are the minor change articles. They do not directly refer to each other. By
evaluation, these relations are invalid when using the 1-OACM but they will be valid
when evaluating by the 2-OACM and succeeding OACMs.

• Those documents have document relations but they do not link to each other or even
share the same citing or cited articles, since they are published in the same year or same
proceedings. We know that these documents should contain the document relations
with each other because they appear in the same title of proceedings and contain quite
similar contents.

• There are minor errors in the information pages downloaded from ACM Digital Li-
brary. In the information pages, some citations appearing in the publications are not
given. Since we extract the citation matrix using the links from the citations in in-
formation page of each paper, the mistake is triggered by this missing information.
Additionally, if the papers are not located in the ACM database, then there is no link
between them. This situation rarely occurs in a set of discovered document relations.
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Chapter 6

Experimental Results on Various Term Weighting

This chapter continues to investigate the term weighting schemes for improving the quality
of discovered document relations. Several combinations of term weighting schemes which
were successfully applied in text mining, information retrieval and text categorization ap-
proaches are examined in this work. A number of experiments are conducted to assess the
document relations discovered from different term weighting schemes. The characteristics
of document relations discovered from several term weighting schemes are also studied. Fi-
nally, the discussion on term weighting schemes which can help to enhance the quality of
discovered document relations is summarized.

6.1 Experimental Settings

The three objectives of these experiments are (1) to study the quality of discovered rela-
tions when applying different term weighting schemes, (2) to measure the relative quality
of discovered relations over the statistical estimation, and (3) to investigate the characteris-
tics of discovered relations on several term weighting schemes. Towards the first objective,
the term weighting schemes in Table 3.2 are explored for encoding the attribute-value data-
base. Using the extended approach of frequent itemset mining, the document relations can
be mined on an attribute-value database (the sample minings are illustrated in Section 3.5).
The sets of discovered relations are evaluated to judge the performance of term weighting
schemes. In the second objective, the expected validity is calculated to compare with the
actual validity in order to show the relative quality of discovered document relations. As
the last objective, the document lengths in some term weighting schemes are investigated to
present the characteristics of discovered relations.

Besides term weighting, the term definition is also an important factor for representing the
documents in an attribute-value database. With the conclusions from previous experiments,
the best scheme for term definition; ‘BXO’: bigram, no-stemming and applying stopword
removal, performs well in discovering high-quality document relations. We then explore
these two term definition schemes together with the above term weighting schemes in this
experiment to enhance the quality of discovered document relations.

The experiments are done on the same datasets as used in Chapter 5. Since the automatic
evaluation was already verified in Chapter 5 as a potential method to measure the quality of
discovered relations, the discovered relations will be evaluated based on the automatic eval-
uation. Although there are both soft and hard scoring methods, we can use either of them to
judge the performance of term weighting schemes. As shown in the previous experiments,
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if the soft validity of one document representation model is higher than another model, then
the hard validity will perform the same. Therefore, the performance of any document repre-
sentation model compared to other models can be relatively judged by either soft validity or
hard validity. As a result, we will explore only the soft validity as an evaluation measure in
this experiment.

6.2 Experimental Results

This section presents the quality of document relations discovered from various document
representations generated by the combinations of term definition and term weighting schemes.
The best term definition scheme, i.e., ‘BXO’: binary, non-stemming and applying stopword
removal, is explored with ten term weighting schemes as shown in Table 3.2. The discovered
docsets are ordered by their supports in descending order and the five top-N rankings, i,e,
top-1000, top-5000, top-10000, top-50000 and top-100000, are selected for investigation.
They are evaluated based on 1-, 2- and 3-OACMs with the soft validity calculation.

Table 6.1: Set 1-validity for various top-N rankings of discovered docsets when applying
several term weighting schemes with ‘BXO’ as term definition.

N 1:bxx 1:bix 1:txx 1:tix 1:txc 1:txm 1:tic 1:tim 1:axx 1:aix
1000 45.47 54.30 26.90 45.64 29.85 23.77 52.74 53.90 46.76 55.17
5000 29.31 38.06 9.31 20.26 10.29 5.93 13.68 13.90 31.07 39.26

10000 24.49 32.20 8.95 18.87 9.71 5.05 11.59 8.71 25.60 33.75
50000 19.29 22.88 4.53 15.21 13.04 2.69 12.91 4.32 17.07 21.15

100000 19.51 23.35 3.17 14.42 12.10 2.86 12.90 3.74 11.47 16.69

6.2.1 Set Validity

Table 6.1 shows the set 1-validity of discovered docsets based on the 1-OACM using ‘BXO’
as the term definition. In the table, the notation is used to represent the evaluation of doc-
sets under the specified OACM where those docsets are discovered from a specific term
weighting scheme. For example, ‘1:bix’ means the evaluation of docsets under 1-OACM
where the docsets are discovered by encoding term weighting by the ‘bix’ scheme (binary
term frequency, idf and no normalization). From the table, some interesting observations can
be made. First, the term weightings with idf schemes provide the document relations with
higher validity than those without idf schemes. This shows the potential of applying idf to
discriminate the content of individual documents from the collection. Second, binary term
frequency still performs well when compared with the term frequency, while the augmented
normalized term frequency can gain higher validity in the higher ranks (small N). How-
ever, the validity of the augmented normalized term frequency cases drops more than the
binary cases when the higher N’s are considered. One possible reason for this comes from
the fact that most docsets in the lower rankings have the same supports when applying the
augmented normalized term frequency. This situation means the docsets which contain less
co-occurring terms can achieve support higher than the minimum support when the num-
ber of docsets is controlled as a threshold for mining. As a result, the discovered docsets
have high probability to be invalid. For the third observation, the cosine normalization can
help to discover the highly valid document relations in the higher ranks. However, there
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is no certain conclusion for the performance of cosine normalization and maximum term
frequency normalization since the results also depend on other term weighting factors. This
can be observed by the comparison of validity in the four columns ‘1:txc’, ‘1:txm’, ‘1:tic’
and ‘1:tim’.

Table 6.2: Set 2-validity for various top-N rankings of discovered docsets when applying
several term weighting schemes with ‘BXO’ term definition.

N 2:bxx 2:bix 2:txx 2:tix 2:txc 2:txm 2:tic 2:tim 2:axx 2:aix
1000 92.56 94.74 72.26 86.09 76.51 67.09 92.12 90.69 92.56 95.11
5000 79.96 86.66 47.10 69.23 49.87 48.31 53.87 57.47 81.05 87.22

10000 74.62 81.60 43.66 66.05 48.69 48.33 48.37 51.32 76.58 82.18
50000 73.40 71.91 34.06 58.46 56.92 49.70 56.48 43.15 68.06 68.72

100000 72.08 76.01 30.95 55.80 54.61 47.39 57.65 42.35 56.24 63.12

Table 6.3: Set 3-validity for various top-N rankings of discovered docsets when applying
several term weighting schemes with ‘BXO’ term definition.

N 3:bxx 3:bix 3:txx 3:tix 3:txc 3:txm 3:tic 3:tim 3:axx 3:aix
1000 98.47 98.57 91.81 94.34 93.48 93.79 97.50 97.93 98.47 98.75
5000 96.52 97.46 78.09 93.70 93.42 91.60 93.61 94.63 96.68 97.27

10000 95.22 96.27 76.73 93.99 93.47 91.20 93.00 94.42 95.72 96.07
50000 95.77 89.14 72.74 95.02 95.93 91.40 95.77 92.75 92.98 87.84

100000 94.87 94.45 71.87 93.84 96.37 92.15 96.52 90.55 89.45 90.03

Besides 1-OACM, the discovered docsets are also evaluated based on 2-OACM and 3-
OACM as shown Table 6.2 and 6.3. From the tables, some observations can be made. First,
similar to 1-OACM, idf schemes can improve the quality of discovered document relations,
although it is only slightly improved for the evaluation based on 3-OACM. Second, the cases
which apply binary term frequency, augmented normalized term frequency or idf with nor-
malization can achieve approximately 90% set-validity for the docsets in the higher ranks.
These show the variations of weighting schemes to represent the document contents. How-
ever, we can cnclude that the order of term weighting schemes for helping to improve per-
formance of document relation discovery. By ordering from the weighting schemes which
can enhance the performance, they can be ordered as follows: idf, binary frequency, aug-
mented term frequency, cosine normalization, maximum term frequency normalization and
term frequency.

Moreover, we also investigate the combinations of term weighting schemes and the unigram
cases as term definition. Although the validity of those document representations performs
in the same way as these bigram cases, their values are not higher than those from the bigram
cases. Therefore, we then excluded the unigram cases from the exploration.

6.2.2 Set Validity vs. Expected Set Validity

The relative quality of discovered docsets against the expected validity is also investigated
in the next experiment. Similar to Section 5.2.3, the expected set validity can be calculated
using the base probabilities under 1-, 2-, and 3-OACMs. For brevity, only the investiga-
tions of ‘bxx’, ‘bix’, ‘axx’ and ‘aix’ are shown here. The actual set validity gained from
the experiments, the expected set validity calculated from Equation 4.9 and their ratios are
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displayed in Table 6.4. The ratio expresses the quality of the discovered docsets compared
to its expected validity.

By comparing the result to the expected validity, the evaluations under different v-OACMs
become comparable. From the tables, the quality of discovered docsets are still significantly
better than the statistical estimation which is expressed by the ratio. Under the 1-, 2- and
3-OACMs, the ratios are approximately 100-800, 20-65 and 10-20, respectively. There are
high variations of the ratio in lower-OACMs since the actual validity is highly varied in dif-
ferent ranks while the expected validity is constant. The order of their ratios is: 1-OACM
> 2-OACM > 3-OACM, although the order of the set validity is: 3-OACM > 2-OACM
> 1-OACM. The ratios of 1-OACM are approximately 4 to 12 times higher than those of
2-OACM, and the ratios of 2-OACM are approximately 4 to 7 times higher than those of
3-OACM. Moreover, the result also confirms that term weighting schemes which apply idf
can gain higher ratios than those without idf in most cases. This states the outstanding per-
formance of applying idf to represent the document content for document relation discovery
against the other term weighting scheme.
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6.2.3 Characteristic of Discovered Document Relations

A set of discovered docsets consists of many docsets with different sizes. With the bigger
docset, an increasing number of articles causes a lower value of validity. In practice, the
bigger the docset is, the lower the value of validity becomes. Table 6.5 shows the number
of docsets of each length, where several term weighting schemes are applied with ‘BXO’ as
term definition in the top-100000 ranked docsets. From the table, three interesting character-
istics are observed: (1) an idf scheme does not affect the length of document relations, (2) a tf
scheme provides a larger number of bigger docsets than an augmented normalized term fre-
quency scheme, (3) an augmented normalized term frequency scheme also produces a larger
number of bigger docsets than a binary frequency scheme, although those two schemes are
comparable in the quality of document relations, and (4) there is no significant effect from
applying cosine or maximum tf normalizations. By these observations, the preference of
high-quality document relations in the aspect of docset length can be selected by applying
different term weighting schemes. It can be applied in the applications when the lengths of
document relations are concerned.

Table 6.5: The number of docsets of each length where several term weighting schemes are
applied with ‘BXO’ as term definition in the top-100000 ranked docsets

Docset bxx bix txx tix txc txm tic tim axx aix
length

2 40,870 37,070 2,035 2,446 2,318 2,741 2,769 4,374 26,308 38,132
3 30,679 21,608 2,032 1,498 1,860 2,553 1,265 1,498 17,580 20,691
4 10,759 15,686 4,386 3,285 3,836 6,092 2,940 2,980 15,023 14,006
5 8,004 11,322 9,775 7,606 7,660 10,777 6,497 6,822 13,638 10,089
6 5,266 7,357 17,718 14,358 12,892 15,622 11,503 12,640 11,488 7,361
7 2,835 4,091 22,315 21,834 17,748 18,408 16,426 18,305 7,969 5,261
8 1,168 1,881 14,975 21,057 19,825 17,696 18,876 20,882 4,754 2,931
9 347 698 12,331 11,982 17,467 13,349 16,184 18,855 2,240 1,076

10 66 217 8,038 8,486 9,036 7,598 12,100 10,026 782 355
11 6 58 4,126 4,699 4,735 3,577 7,053 2,536 188 84
12 11 1,647 1,985 1,911 1,242 3,120 852 28 13
13 1 498 615 574 298 1,009 199 2 1
14 108 131 121 44 225 29
15 15 17 16 3 31 2
16 1 1 1 2
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Chapter 7

Conclusions and Future Work

This chapter summarizes all research works done in this thesis. The key contributions are
listed to present the achievement and impact of this work. Some recommendations for open
issues and directions are also discussed for future research.

7.1 Summary

The thesis presents a new approach to discover document relations using extended frequent
itemset mining technique including a method to use citation information of research publi-
cations as a source for evaluating the discovered document relations. Five contributions of
this work are as follows:

1. The thesis presented a method to discover the document relations among the collec-
tion of scientific publications using the extended frequent itemset mining approach.
The extended approach is general enough to mine on both conventional transactional
database with boolean (binary) values and extended transactional database with real
values. With this extension, the high-quality document relations can be discovered.

2. The thesis studied the approach of encoding document representation with several
term definition and term weighting schemes and presented the quality of discovered
relations for each document representation model. For the term definition scheme,
bigram cases provide better document relations than unigram cases and applying stop-
word removal is preferable while the stemming slightly affects the quality. For the
term weighting scheme, idf dramatically improves the quality of document relations,
binary term frequency is comparable to the augmented normalized term frequency
and both perform better than the term frequency, and there is no significant difference
between cosine and maximum weight normalization.

3. The thesis explored the validity with both soft/hard scorings including the evaluation
based on either direct or indirect citations (different v-OACM). The soft validity is
always higher than or equal to the hard validity since the former is obtained by less
restrictive evaluation than the latter. Both can be used as the measurement to reflect
the quality of discovered relations. The discovered relations are more valid to the
case of both direct and indirect citations (2- and 3-OACMs) than the case of the direct
citations (1-OACM) alone.

4. The thesis gave an analysis on the actual validity and the expected validity estimated
from generative probability on v-OACM. To make the evaluation criteria impartial,
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the actual validity is compared to its expected validity which was calculated from the
statistical estimation regardless of the v-OACM. The result indicates that although the
proposed method gains low set validity for 1-OACM, the result is quite good compared
to the expected validity.

5. The thesis compared the results from the proposed automatic evaluation with the re-
sults from human evaluation to confirm the usability of the proposed automatic evalu-
ation. The result confirms that the proposed automatic evaluation using citation infor-
mation under v-OACM is comparable to human intuition in assessing the relatedness
of discovered relations, and provides the consistent conclusions with the human eval-
uation.

7.2 Future Study

As the future study on document relation discovery, the following topics are interesting for
further exploration. First, instead of frequent itemsets for representing document relations,
the association rule is another interesting knowledge for expressing document relations. By
this, we need to consider the direction of relations between the documents. Second, a hy-
brid approach which utilizes both terms in documents and citations among documents for
discovering document relations is also valuable for further investigation. It is also interest-
ing to apply this approach to the web data collections and utilize the hyperlinks between
web pages as information for retrieving high-quality document relations. The third topic
concerns granularity of relations among documents. Instead of the relations between full
documents, the fine-grained relations among portions of documents or the more general re-
lations between groups of documents are an interesting knowledge to be discovered. This
approach can be implemented by the method of generalized frequent itemset mining where
several parameters need to be investigated.
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Appendix A

Generalized Frequent Itemset Mining

This section presents the research that focuses on studying algorithms for generalized fre-
quent itemset mining and generalized closed frequent itemset mining when there is a taxon-
omy presented on the items. The proposed algorithms are general and efficient enough to
apply for any works which can be formulated as a problem of generalized frequent itemset
mining. As one approach, the problem of document relation discovery can be viewed as a
problem of generalized frequent itemset mining where the documents are partitioned into
small portions or grouped as classes and we can find the relations among portions of docu-
ments or classes. Although it is possible to apply the concept of generalized frequent itemset
mining for document relation discovery, it was left as our future work.

Generalized Association Rules and Generalized Frequent Itemsets

With the presence of a taxonomy, the formal problem description of generalized associa-
tion rules is different from earlier works on association rule mining [Agrawal et al., 1993a,
Agrawal and Srikant, 1994]. For clarity, all explanations in the section are illustrated using
an example shown in Figure A.1.

Let T be a taxonomy, a directed acyclic graph on items, which represents is-a relation-
ship by edges, e.g. Figure A.1C. The items in T are composed of a set of leaf items (IL)
and a set of non-leaf items (INL). Let I = {i1, i2, ..., im} be a set of distinct items where
I = IL∪ INL, and let T = {1, 2, ..., n} be a set of transaction identifiers (tids). In this example,
IL = {A,B,C,D,E}, INL = {U,V,W}, I = IL∪ INL = {A,B,C,D,E,U,V,W}, and T = {1, 2,
3, 4, 5, 6}. A subset of I is called an itemset and a subset of T is called a tidset. Normally, a
transactional database is represented in the horizontal database format, where each transac-
tion corresponds to an itemset (e.g. Figure A.1A). An alternative to the horizontal database
format is the vertical database format, where each item corresponds to a tidset which con-
tains that item (e.g. Figure A.1B). Note that the original database contains only leaf items. It
is possible to represent an original vertical database by extending it to cover non-leaf items
where a transaction of each leaf item also supports its ancestor items from taxonomy (e.g.
Figure A.1D). Let the binary relation δ⊆ I×T be an extended database. For any x ∈ I and
y ∈ T , xδy can be denoted when x is related to y in the database (called x is supported by y).
Here, except for the elements in I, lower case letters are used to denote items and upper case
letters for itemsets.

For x̂,x∈ I, x̂ is an ancestor of x (conversely x is a descendant of x̂) when there is a path from
x̂ to x in T . For any x ∈ I, a set of all its ancestors (descendants) is denoted by AN C (x)
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Figure A.1 An example of databases and taxonomy

(DES(x)). For example, AN C (B) = {U,V} and DES(W) = {D,E}.
A generalized itemset G is an itemset each element of which is not an ancestor of the others,
G = {i∈ I|∀ j ∈G, i /∈AN C ( j)}. For example, {A,B} (AB for short), {A,W} (AW for short)
are generalized itemsets. Let IG = {G1,G2, ...,Gl} be a finite set of all generalized itemsets.
Note that, for 1≤ i≤ l, Gi ⊆ I and IG ⊆ P (I). The support of G, denoted by σ(G), is defined
by a percentage of the number of transactions in which G occurs as a subset to the total
number of transactions, thus σ(G) = |t(G)|/|T|. Any G is called generalized frequent itemset
(GFI) when its support is at least a user-specified minimum support (minsup) threshold.

In GARM, a meaningful rule is an implication of the form R : G1 → G2, where G1,G2 ∈
IG,G1 ∩G2 = /0, and no item in G2 is an ancestor of any items in G1. For example, A →C
and U → C are meaningful rules, while A →UC is a meaningless rule because its support
is redundant with A →C. The support of a rule G1 → G2, defined as σ(G1∪G2) = |t(G1∪
G2)|/|T | = |t(G1)∩ t(G2)|/|T |, is the percentage of the number of transactions containing
both G1 and G2 to the total number of transactions. The confidence of a rule, defined as
σ(G1∪G2)/σ(G1), is the conditional probability that a transaction contains G2, given that it
contains G1. For example, the support of A →C is σ(A∪C) = |t(A)∩ t(C)|/|T| = |1245|/6
= 4/6 or 67% and the confidence is σ(A∪C)/σ(A) = 1 or 100%. The meaningful rule is
called a generalized association rule (GAR) when its confidence is at least a user-specified
minimum confidence (minconf) threshold.

The task of GARM is to discover all GARs the supports and confidences of which are at
least minsup and minconf, respectively.

Two Relationships on Generalized Itemsets

This section introduces two relationships, i.e. subset-superset and ancestor-descendant re-
lationships, based on lattice theory. For more details about lattice theory, the reader can
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refer to [B.A.Davey and H.A.Priestley, 2002]. To construct the generalized itemset lattice in
GARM, we adapt the formal concept analysis [Ganter and Wille, 1997] and itemset lattice
in ARM [Zaki and Ogihara, 1998]. Similar to ARM, GARM occupies the subset-superset
relationship which represents a lattice of generalized itemsets. As the second relationship,
an ancestor-descendant relationship is originally introduced in this work to represent a set of
k-generalized itemset taxonomies.

Subset-Superset Relationship: Lattice of Generalized Itemsets

Definition 1 (Subset-superset relationship) Let a binary relation δS ⊆ P (I)×P (I) be the
subset-superset relationship. For any X1,X2 ∈ IG, X1δSX2 is denoted when X1 is a subset of
X2 (X2 is a superset of X1).

Definition 2 (Lattice of generalized itemsets) The lattice of generalized itemsets is the par-
tial order specified by a subset-superset relationship δS , where the meet is given by the set
intersection on generalized itemsets, and the join is given by the set union on generalized
itemsets as follows. For any X1,X2 ∈ IG,

Meet : X1∧X2 = (X1∩X2)
Join : X1∨X2 = (X1∪X2)

Ancestor-Descendant Relationship: k-Generalized Itemset Taxonomies

Definition 3 (Ancestor-Descendant relationship) Let a binary relation δA ⊆ P (I)×P (I)
be the ancestor-descendant relationship. For any X1,X2 ∈ IG, X1δAX2 can be denoted when
X2 is obtained by replacing one or more items in X1 with one of their descendants, X1 is
called an ancestor itemset of X2 (and X2 is called a descendant itemset of X1).

By using ancestor-descendant relationship, we can extend the original taxonomy (1-generalized
itemset taxonomy) to express the ancestor-descendant relationships among k-length gener-
alized itemsets.

Definition 4 (k-generalized itemset taxonomy) The k-generalized itemset taxonomy is the
partial order specified by an ancestor-descendant relationship δA among generalized item-
sets with the same k-length.

Combining Two Relationships

The generalized itemsets can be shown in a complex view that combines both subset-superset
and ancestor-descendant relationships. For example, assume the taxonomy as in Figure
A.1C and a set of items {A,B,C,U,V}, the relationships among generalized itemsets are
shown in Figure A.2. The solid lines express the subset-superset relationship where the
lower itemset is a subset of the upper itemset, and the dashed lines express the ancestor-
descendant relationship where the itemset at the beginning of an arrow is an ancestor itemset
of the itemset at the end of the arrow.
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Figure A.2 Relationships on generalized itemsets (a part)

Constraints on Generalized Itemsets

We can exploit these two relationships as constraints for efficiently finding GFIs. Two lem-
mas are presented to justify the optimization as follows.

Lemma 1 (Subset-Superset Constraint) For any X ∈ IG, if a generalized itemset X is fre-
quent, all subsets of X are frequent. Conversely, if a generalized itemset X is infrequent, all
supersets of X are infrequent.

Proof: Let X ,Y,Z ∈ IG and Z = X ∪Y . The support of Z, σ(Z) = |t(Z)| = |t(X)∩ t(Y)| must
be less than or equal to the supports of its subsets, i.e. σ(X) and σ(Y ). Thus, if Z satisfies
minsup (frequent), both X and Y do too. If both or either of X and Y does not satisfy minsup
(infrequent), then neither does Z.

For example, given minsup = 67%, a generalized itemset ACD (σ(ACD)=33%) is infrequent.
The superset of ACD, such as ACDE (σ(ACDE)=33%) or ABCDE (σ(ABCDE) = 17%), are
also infrequent. This constraint shows that we need not consider the supersets of infrequent
itemsets.

Lemma 2 (Ancestor-Descendant Constraints) For any X ∈ IG where X̂ is an ancestor
itemset of X, if X is frequent, then X̂ is also frequent. Conversely, if X̂ is infrequent, X
is also infrequent.

Proof: Let x, x̂ ∈ I and Y,Z, Ẑ ⊆ I. Assume that Z = x∪Y , Ẑ = x̂∪Y . x̂ is an ancestor of
x, and Ẑ is an ancestor itemset of Z. The support of Ẑ, σ(Ẑ) = |t(Ẑ)| = |t(x̂)∩ t(Y )|, must
be greater than or equal to the support of Z, σ(Z) = |t(Z)| = |t(x)∩ t(Y)|, since t(x) ⊆ t(x̂).
Thus, if Z satisfies minsup (frequent), so does Ẑ. If Ẑ does not satisfy minsup (infrequent),
neither does Z.

For example, given minsup = 83%. A generalized itemsetUE (σ(UE) = 67%) is infrequent.
The descendant itemsets of UE, such as AE (σ(AE) = 33%) and BE (σ(BE) = 33%), are
also infrequent. This constraint shows that we need not consider the descendant itemsets of
infrequent itemsets.
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Generalized Closed Itemsets

In this section, the concept of generalized closed itemsets is defined by extending the tra-
ditional concept of closed itemsets in ARM [Pasquier et al., 1999, Zaki and Hsiao, 2002] to
cope with the generalized itemsets. We also show that a set of generalized closed frequent
itemsets is sufficient to be the representative of a larger set of GFIs. In order to understand
the generalized closed frequent itemset, we introduce a maximal generalized itemset which
is another representation of a generalized itemset.

Maximal Generalized Itemsets

In general, a generalized itemset can be transformed into another representation that in-
cludes both original items and all of their ancestors. This representation, we call a maximal
generalized itemset of a generalized itemset. The formal definition is stated as follows.

Definition 5 (Maximal Generalized Itemset) Let X ⊆ I, X is called a maximal generalized
itemset iff the following condition is satisfied ∀i(i ∈ X → AN C (i) ⊂ X).

In every situation, each generalized itemset can always be transformed to each maximal
generalized itemset and vice versa. Using the extended database, a generalized itemset can
easily be transformed into the form of a maximal generalized itemset. This form is useful
for finding generalized closed itemsets, since the concept of a closure finds a maximal su-
perset of an itemset that supports the same tidset as a generalized itemset (described below).
Thus, maximal generalized itemsets are generated instead of generalized itemsets when we
find generalized closed itemsets. However each element in the set can be mapped to its
corresponding generalized itemset.

Generalized Closed Itemset Concept

Definition 6 (Galois Connection) Let X ⊆ I, and Y ⊆ T . Then the mapping functions,
t : P (I) �→ P (T ), t(X) = {y ∈ T |∀x ∈ X ,xδy}
i : P (T ) �→ P (I), i(Y) = {x ∈ I|∀y ∈ Y,xδy}
define a Galois connection between the power set of I and the power set of T .

The following properties hold for all X ,X1,X2 ⊆ I and Y,Y1,Y2 ⊆ T :

1. X1 ⊆ X2 → t(X1) ⊇ t(X2).

2. Y1 ⊆Y2 → i(Y1) ⊇ i(Y2).

3. X ⊆ i(t(X)) and Y ⊇ t(i(Y)).

The mapping t(X) is the maximal tidset which contains the generalized itemset X , given
by t(X) =

�
x∈X t(x). The mapping i(Y ) is the maximal generalized itemset which is con-

tained in the tidset Y , given by i(Y ) =
�

y∈Y i(y). For example, t(UDE) = t(U)∩ t(D)∩
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t(E) = 123456 ∩ 13456 ∩ 1356 = 1356, and i(356) = i(3)∩ i(5)∩ i(6) = VUBCWDE ∩
VUABCWDE ∩VUBCWDE = VUBCWDE.

Different from the original closure operator, the generalized closure operator is defined as
follows:

Definition 7 (Generalized Closure) Let X ⊆ I, and Y ⊆ T . The two mappings
gcit : P (I) �→ P (I), gcit(X) = i◦ t(X) = i(t(X))
gcti : P (T ) �→ P (T ), gcti(Y ) = t ◦ i(Y ) = t(i(Y))

are generalized closure operators on generalized itemset and tidset respectively. X is called
a generalized closed itemset (GCI) when X = gcit(X), and Y is called a generalized closed
tidset (GCT) when Y = gcti(Y ).

For X ⊆ I and Y ⊆ T , the generalized closure operators gcit and gcti satisfy the following
properties:

1. Y ⊆ gcti(Y ).

2. X ⊆ gcit(X).

3. gcit(gcit(X)) = gcit(X), and gcti(gcti(Y )) = gcti(Y ).

The first property states that Y is a subset of its generalized closure. For example, let Y =
135, gcti(135) = t(i(135)) = t(UCDE) = 1356. Since 135 �= gcti(135) = 1356, such that
1356 is a generalized closed tidset while 135 is not. The second property says that X is
a subset of its generalized closure. For example, gcit(VWDE) = i(t(VWDE) = i(1356)
= VUCWDE. Since VWDE �= gcit(VWDE) = VUCWDE, such that VUCWDE is a GCI
while VWDE is not. Note that each GCI is a maximal generalized itemset, but it can be
mapped to a generalized itemset. From the previous example, VWDE and VUCWDE can
be transformed to the generalized itemsets VDE and UCDE, respectively. In generalized
itemset form, this means that the GCI of VDE is UCDE. The last property says that the
round-trip of mapping will obtain the same closure.

For any GCI X , there exists a companion GCT Y , with the property of Y = t(X) and X =
i(Y ). Such a GCI and GCT pair X ×Y is called a concept. All possible concepts can form a
Galois lattice of concepts as shown in Figure A.3.

Generalized Closed Frequent Itemsets

The support of a concept X ×Y is a percentage of the size of closed tidset Y to the total
number of transactions (|Y |/|T |). A GCI is called a generalized closed frequent itemset
(GCFI) when its support is at least minsup.

Lemma 3 (Equivalence of Support) For any generalized itemset X, its support is equal to
the support of its generalized closure (σ(X) = σ(gcit(X))).

Proof: The support of X , σ(X) is |t(X)|/|T |, and the support of gcit(X), σ(gcit(X)) is
|t(gcit(X))|/|T |. To prove the lemma, we have to show that t(X) = t(gcit(X)).
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VUAC ×1245

VUC ×123456

VUCWD ×13456

VUBC ×2356

VUBCWDE ×356

VUABCWDE ×5

VUACWDE ×15

VUACWD ×145
VUCWDE ×1356

VUABC ×25

Figure A.3 Galois lattice of concepts and frequent concepts

Since gcti is a generalized closure operator, it satisfies the first property that t(X)⊆ gcti(t(X))
= t(i(t(X))) = t(gcit(X)). Thus t(X) ⊆ t(gcit(X)). In the other case, the gcit(X) provides
the maximal itemset, i.e., X ⊆ gcit(X), which implies that t(X) ⊇ t(gcit(X)) due to the first
property of Galois connection. Thus we conclude that t(X) = t(gcit(X)).

Implicitly, the lemma states that all GFIs can be uniquely determined by the GCFIs since
the support of any generalized itemsets will be equal to its generalized closure. Given a set
of GCFIs, a Hasse diagram representing the subset-superset relationship among concepts
in the Galois lattice, can be constructed using the method in [Valtchev et al., 2000] with
O(l.m.w(L).d(L)) in time, where l is the average size of generalized itemsets, m is the
number of items, w(L) is the width of the lattice and d(L) is the maximal degree of a lattice
node. Consequently, all GFIs and their supports can be efficiently determined from the
GCFIs and their Hasse diagram (Galois lattice). However, all GFIs need not be discovered,
since a set of GCFIs is typically used to construct a minimal set of non-redundant rules as
shown in [Bastide et al., 2000] and [Zaki, 2000]. In the worst case, the number of GCFIs is
equal to the number of GFIs, but typically it is much smaller. From our example, there are
10 GCIs which are the representatives of a large number of all generalized itemsets as shown
in Figure A.3. With minsup=50%, only 7 concepts (in bold font) are GCFIs.

Algorithms: SET and cSET

This section describes two algorithms, SET and cSET, that utilize two constraints for effi-
ciently mining GFIs and GCFIs, respectively. For fast finding all GFIs, each of the lemma
in section 4 can be applied to each relationship of generalized itemsets. Lemma 1 can be ap-
plied to the lattice of generalized itemsets while Lemma 2 can be applied to the taxonomies
of k-generalized itemsets. Lemma 1 is concerned with the subset-superset relationship which
exists in the generalized itemset lattice, while Lemma 2 is concerned with the ancestor-
descendant relationship which exists in the taxonomies of k-generalized itemsets. These
lemmas enable us to avoid generating itemsets that are dominantly infrequent. To enumerate
all GFIs, we can traverse each relationship of generalized itemsets. For bi-directional tra-
versal, the lattice of generalized itemsets should be traversed from subsets to their supersets
and from ancestor itemsets to their descendant itemsets. Before generating any generalized
itemsets, all of their subsets must be frequent. Similarly, an ancestor itemset must be fre-
quent before generating its descendant itemsets. Following these approaches, only supersets
and descendant itemsets of GFIs are generated.
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V×123456                       W×13456 
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                    BCDE×356 
 

Figure A.4 Set enumeration using SET algorithm (minsup=50%)

SET Algorithm

Most of the computational cost on generating all GFIs is to count supports of the generalized
itemsets for checking whether they are frequent or not, and checking to eliminate meaning-
less itemsets. The SET algorithm applies two techniques for enumerating GFIs using an
extended vertical database format. The first one is to apply our novel set enumeration to
generate only generalized itemsets without intensive checking on meaningless itemsets. This
set enumeration was proposed in our previous work [Sriphaew and Theeramunkong, 2002].
The second technique is to apply a bi-directional traversal during set enumeration in order
to avoid generating obvious infrequent itemsets.

As stated in section 5.1, a generalized itemset is transformed from a maximal generalized
itemset by omitting the ancestors of items in the maximal set. However, the representation
of a maximal generalized itemset is useful for describing the process of set enumeration.
Normally, two itemsets can be joined together when they have the same size k and contain
the preceding k-1 itemset for avoiding redundant enumeration. Among maximal generalized
itemsets, the join can be produced by a set union. For example, joining VUA with VUC =
VUAC. However, when reducing to the generalized itemset, the join can be produced by a
set union of the first itemset with the last item of the second itemset, for example, joining A
with UC = A∪C = AC where its tidset is given by a set intersection. This join operation on
generalized itemsets is used in the SET algorithm.

For clarity, we explain the SET algorithm by the example illustrated in Figure A.4. With
minsup=50%, the proposed set enumeration starts with an empty set. Then, all second-
leveled items of the taxonomy which are frequents, i.e. V and W , are added to the second
level of the tree. The children under each generalized itemset are generated in two manners.
First, we generate taxonomy-based child itemsets (based on ancestor-descendant relation-
ship) by replacing the right most item of that generalized itemset with one of their children
(if any). Secondly, we generate all join-based child itemsets (based on subset-superset re-
lationship) by the union between the generalized itemsets and the last item of their siblings
that have higher orders. For example, generating the children of itemset V , we first generate
taxonomy-based child itemsets, i.e., U and C, and then generate join-based child itemsets,
i.e., VW . Each generalized itemset which is generated must be frequent, otherwise it will
be pruned. With the same approach, the process recursively occurs until no new GFI is
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Figure A.5 Set enumeration using cSET algorithm (minsup=50%)

generated. Finally, a complete GFI tree is constructed without excessive checking cost. All
generalized itemsets in Figure A.4, except ones with a cross, are GFIs. The pseudo-codes of
SET will be shown in Section 6.3.

cSET Algorithm

This section presents an extension of the SET algorithm, called the cSET algorithm, for
mining GCFIs. Since the GCFI is in the form of the maximal generalized itemset, we intend
to enumerate the generalized itemsets in the form of maximal generalized itemsets. The
same process of set enumeration in SET for bi-directional traversal is used, but the join
operation is given by a set union on maximal generalized itemsets with some conditional
properties to discard non-GCFIs.

In the process of set enumeration, the following conditional properties are used to reduce
the number of GCFIs that need to be generated. Assume that X1 × t(X1) is joined with
X2× t(X2):

1. If t(X1) = t(X2), then (1) replace every occurrence of X1 with X1 ∪ X2, (2) remove X2

if X2 is a sibling of X1, and (3) generate taxonomy-based child itemsets of the current
new X1 (since the former X1 is replaced by X1∪X2).

2. If t(X1) ⊂ t(X2), then (1) replace every occurrence of X1 with X1 ∪ X2, and (2) generate
taxonomy-based child itemsets of the current new X1.

3. If t(X1) ⊃ t(X2) and t(X1)∩ t(X2) is not contained in hash table, then (1) store t(X1)∩
t(X2) in the hash table, (2) remove X2 if X2 is a sibling of X1, and (3) generate X1 ∪ X2

under X1 in tree.

4. If t(X1) �= t(X2) and t(X1)∩ t(X2) is not contained in hash table, (1) store t(X1)∩ t(X2)
in the hash table, and (2) generate X1 ∪ X2 under X1 in tree.

For clarity, we explain the cSET algorithm using the example in Figure A.5. With min-
sup=50%, the cSET algorithm starts with an empty set. Then, all second-leveled items of the
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taxonomy which are frequent, i.e., V and W , are added to the second level of tree. Similar to
SET, children are generated based on two methods but the form of an itemset has changed
to be the maximal generalized itemset. The taxonomy-based child itemset is generated by a
set union between the current itemset and one of the children of the rightmost item in that
set according to taxonomy (if any). The join-based child itemset is normally generated by a
set union on maximal generalized itemsets as previously described in section 6.1. The first
child of V from taxonomy (i.e., U ) produces taxonomy-based itemsetVU . The first property
holds for VU , which results in replacing V with VU and then generating its taxonomy-based
itemsets, i.e., VUA andVUB with the fourth property. The second child of V from taxonomy
(i.e., C) is still joined with the current itemset (VU ), which produces VUC. Again, the first
property holds forVUC, which results in replacingVU and the children in the tree underVU
with VUC. Because of this, VUA and VUB are replaced by VUCA and VUCB, respectively.
Next, the current itemset (VUC) joins with its sibling (W ), i.e., VUCW . The third property
holds for VUCW , which results in removing W and then generating VUCW under the cur-
rent VUC. This process shows that the first and third properties can help us to discard some
itemsets and the subtrees under those itemsets which are clearly not to be GCFIs. That is, W
and the subtree under W are pruned. With the same approach, the process recursively occurs
until no new GCFI is generated. The hash table is used for checking whether the current
tidset occurs in the previous enumeration or not. Instead of 36 GFIs in Figure A.4, we enu-
merate only 7 GCFIs as shown in Figure A.5. This action results in reducing computational
time. All remaining maximal generalized itemsets in Figure A.5, except ones with a cross,
are GCFIs.

Pseudo-Codes Description

The pseudo-codes of SET and its extension cSET are shown in Figure A.6. For the SET
algorithm, line 11.c, 13.c, 17.c and 18.c-30.c are ignored. In the main procedure SET-Main,
the subordinate function called SET-Extend, recursively creates a subtree using the proposed
method. The GenTaxChild function produces a taxonomy-based child itemset while the
GenJoinChild function produces a join-based child itemset. In line 12 and 16, the generated
itemsets must be checked to ensure whether they are frequent or not. The NewNode function
generates a new itemset under the current itemset. For the cSET algorithm, line 11.s, 13.s
and 17.s are ignored. Similar to SET, cSET uses SET-Main, SET-Extend, GenTaxChild and
GenJoinChild as well as cSET-Property and Hash functions. Since the form of a generalized
itemset in SET is generalized itemset but cSET is maximal generalized itemset, line 13 of SET
and cSET are different. Instead of NewNode function in line 13.s and 17.s, we use the cSET-
Property function in line 13.c and 17.c to check the conditional properties as previously
described in section 6.2 for generating only GCFIs. The Hash function is used for checking
whether the current tidset occurs in the previous enumeration or not by returning 1 when it
exists, or storing that tidset in the hash table and return 0 when it does not exist. Following
the SET algorithm, we will get the tree of all GFIs while the cSET algorithm will get the tree
of all GCFIs.
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Experimental Results

For testing the performance of our approaches, we compare the SET and cSET algorithms
with two popular algorithms, i.e., Cumulate [Srikant and Agrawal, 1997] and Prutax [Hipp et al., 1998].
All algorithms were coded in C. Experiments were done on a 1.7GHz Pentium IV PC with
640MB of main memory, running Windows 2000.

To measure the exact execution time of algorithms (excluding intensive I/O cost), we make
the dataset and its taxonomy reside in the memory. Therefore, the memory size should be
large enough to store the data in order to avoid page swapping time. Here, we can illustrate
the calculation of memory needed for the largest dataset as follows. The largest dataset in
the experiments is the synthetic dataset with 1 million (106) transactions which contains 10
items per transaction and 5 fanouts per item. Converting the dataset to the vertical format,
where an item is encoded to an integer, the required memory for this dataset is 106 × 10
× 5 × 4 bytes ≈ 200 MB. From our investigation, the exact memory usage for this dataset
including other variables of the program and required memory for the operating system is at
least 32 MB. Approximately, 300 MB are required where the remaining memory space can
be used for the computation process. To process more transactions, we need more memory.
Anyway, 640 MB is large enough for the current experiments.

Table A.1 The default value of parameters in synthetic datasets

Parameter Default
Number of transactions 100K
Average size of the transaction 10
Number of items 100K
Number of roots 250
Fanout 5
Depth-ratio 1
Minimum support 1%

Depth-ratio = probability that item in a rule comes from level i
probability that item comes from level i+1

Table A.2 The real datasets and their parameters

Dataset Parameters
#Trans #Items* #Roots Fanout

MushroomR40F3 8124 159 40 3
MushroomR24F5 8124 143 24 5
ChessR15F5 3196 90 15 5
*#Items include both leaf (original) items and non-leaf items.
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Datasets

The synthetic and real datasets are used as benchmarks for evaluating the performance. The
synthetic datasets were automatically generated by a generator tool1. They mimic the trans-
actions in a retailing environment. The important default values of parameters in synthetic
datasets are shown in Table A.1. Two standard real datasets, i.e., mushroom and chess2, are
also used for investigating our methods in an actual environment. These real datasets are
often used for testing the performance of data mining algorithms. There is no taxonomy
specified in the original real datasets. Therefore, we construct an additional taxonomy for
each dataset by defining a number of roots and fanout of the taxonomy in order to make all
original items appear in the leaf level of the taxonomy. All 119 original items of mushroom
can be covered in the second depth of a taxonomy with the number of roots and fanout,
respectively, being 40 and 3 (or 24 and 5), and 75 original items of chess can be covered in
the second depth of taxonomy with the number of roots and fanout, respectively, being 15
and 5. These taxonomies are suitable since the original real datasets we used are dense and
many items usually appear in most portions of transactions. Therefore, with higher fanout
the excessive amount of dense patterns may occur and then the algorithms suffer from the
memory limitation problem. Thus, we get three different datasets as shown in Table A.2.
These three real datasets are fixed throughout the experiments.

Performance Testing

Four experiments are performed to investigate the performance of the algorithms in differ-
ent situations. At first, we study how the algorithms perform on different characteristics of
taxonomy. Secondly, we investigate the performances of the algorithms on different scaling
of database. Thirdly, the performance of algorithms with various minsups is evaluated, and
the numbers of frequent patterns (i.e., GFIs and GCFIs) are compared. Finally, the memory
usage of each algorithm is checked using both synthetic and real datasets. We only use real
datasets in the third and fourth experiments since it is not possible to vary the characteristics
of their taxonomy.

Taxonomy Characteristics: Figure A.7 shows the execution time of algorithms when the
characteristics of taxonomy are changed. The performances of SET and cSET are so close
since the numbers of GFIs and GFCIs almost equal (shown in the latter experiment). Both
algorithms are approximately 4 to 180 times faster than Prutax and 22 to 230 times faster
than Cumulate. In case of the smaller number of roots, taxonomy levels become deeper and
then the number of ancestor itemsets turns out to be larger. SET and cSET are not sensitive
to this situation, while Prutax requires more time for checking and Cumulate needs more
time to modify the transactions. With different fanouts, the number of children of each non-
leaf item in taxonomy is varied. The number of ancestor itemsets in lower fanouts is larger
than higher fanouts. As shown in the figure, decreasing the fanout has an effect similar to
decreasing the number of roots. For a lower depth ratio, we gain more frequent patterns that
contain items coming from the lower parts rather than the upper parts of taxonomy. The
number of ancestor itemsets increases and this phenomenon results in more time consumed

1The generator tool are provided by IBM Almaden Site.
2Original mushroom and chess are provided by UCI Machine Learning Database Repository.
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in Prutax and Cumulate. SET and cSET are approximately 6-10 times faster than Prutax and
20-38 times faster than Cumulate with depth-ratio variation.

Scaling Database: Figure A.8 shows the execution time of each algorithm when the data-
base is scaled up and down. In this experiment, all taxonomy parameters are fixed to their
default values, but only the number of transactions and the number of items are scaled. We
observe an exponential increment in the running time with the increasing number of transac-
tions. However, SET and cSET still perform well with the large number of transactions. With
the scaling number of items, SET and cSET are not affected by this variation since an item
occurs sparsely in the transactions and then the number of GFIs to be counted is reduced,
but it results in more time consumed in Prutax and Cumulate.

Table A.3: Experimental results: minimum support variation and number of frequent pat-
terns

Minsup Execution Time (sec) #Frequent Patterns
SET cSET Prutax Cumulate #GFIs #GFCIs

Dataset: SynR250F5D1
4 0.7 0.7 9.5 30.6 228 226
3 1.0 1.0 11.3 37.7 404 401
2 1.5 1.4 14.9 58.5 848 843

1.5 2.0 1.8 19.3 73.2 1,484 1,475
1 2.9 2.6 29.9 101.1 3,235 3,211

0.75 4.0 3.3 40.8 71563.6 5,684 5,633
Dataset: MushroomR40F3

100 0.03 0.01 0.03 0.39 95 1
90 0.06 0.02 0.06 0.69 431 5
80 0.31 0.02 0.38 1.58 1,839 18
70 1.09 0.05 1.16 3.19 7,983 42
60 2.92 0.05 2.98 8.59 19,543 102
50 9.48 0.13 9.69 57.09 68,095 297

Dataset: MushroomR24F5
100 0.14 0.01 0.05 0.52 191 1
90 1.41 0.03 1.23 3.60 9,023 34
80 4.59 0.06 4.00 14.19 28,127 84
70 12.88 0.13 12.27 79.77 85,343 216
60 29.94 0.28 29.14 360.77 204,143 485
50 76.67 0.59 78.36 2141.99 524,231 1,102

Dataset: ChessR15F5
100 2.36 0.01 2.64 11.08 32,767 1
98 15.41 0.01 20.03 401 231,423 22
96 25.45 0.02 158.14 1127.92 389,119 45
94 65.69 0.02 926.25 7081.02 935,935 125
92 110.75 0.05 2895.33 19334.05 1,602,559 270
90 179.53 0.06 7120.33 48890.14 2,565,631 499

Minsup Variation and Number of Frequent Patterns: Typically, the real datasets are very
dense, i.e., frequent patterns are mostly long even high values of minsup while the synthetic
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datasets are sparse. Table A.3 shows the execution time of each algorithm and the number
of frequent patterns when minsup is varied. The execution time shows exponential growth
with decreasing minsup. SET and cSET provide similar performance in the synthetic dataset
(SYNR250F5D1), but they perform differently on the real datasets (i.e., MushroomR40F3,
MushroomR24F5 and ChessR15F5). Cumulate cannot be executed with a lower minsup in a
synthetic dataset since it generates a lot of candidates which are at last infrequent. In the real
datasets, the performances of SET and Prutax are quite close since the sizes of real datasets
are small, resulting in a trivial hashing time for Prutax. However, cSET still performs better
than other algorithms, since the number of GCFIs is significantly smaller than the number of
GFIs as shown in Table A.3. We observe that the difference between the number of GFIs and
GCFIs is much smaller in the synthetic datasets but dominantly larger in the real datasets.

Table A.4 Maximum memory usage of each algorithms

Dataset(%Minsup) Maximum Memory Usage (MB)
SET cSET Prutax Cumulate

SynR250F5D1(2%) 35.9 44.6 52.8 28.2
SynR250F5D1(1%) 46.2 48.9 55.0 136.3
MushroomR40F3(80%) 12.9 11.6 16.3 23.4
MushroomR40F3(60%) 13.2 13.7 17.4 29.8
MushroomR24F5(80%) 13.0 13.4 16.4 29.4
MushroomR24F5(60%) 13.8 22.3 17.8 79.9
ChessR15F5(100%) 10.5 9.4 13.9 35.9
ChessR15F5(98%) 10.8 9.8 14.9 72.4
ChessR15F5(96%) 10.9 10.4 15.2 138.4

Memory Usage: Table A.4 shows the maximum memory usage of each algorithm with
different minsups in the synthetic and real datasets. For the synthetic dataset, the memory
usage of cSET is slightly greater than SET since the number of their frequent patterns are
almost equal and cSET has to hold some GFIs in memory for checking. However, their
memory usage are rather smaller than Prutax. For the real datasets, the memory usage of
SET and cSET are smaller than the other two algorithms, but the memory usage of Cumulate
grows excessively since a lot of candidates are generated and held in memory. These results
confirm that SET and cSET are superior to the other algorithms in memory utilization.

Summary

In this work, we presented a theoretical framework of generalized itemsets based on subset-
superset relationship (represented by lattice of generalized itemsets), and ancestor-descendant
relationship (represented by taxonomy of k-generalized itemsets). To efficiently discover all
generalized frequent itemsets, we introduced two constraints corresponding to these two re-
lationships. We proposed SET and cSET algorithms to enumerate generalized frequent item-
sets and generalized closed frequent itemsets, respectively. SET and cSET use an efficient
traversal on the combination of two relationships to avoid generating meaningless itemsets,
and apply two constraints to prevent counting useless generalized itemsets that are obviously
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infrequent. This lets SET and cSET efficiently find all frequent patterns. A number of exper-
iments showed that SET and cSET outperform the previous well-known algorithms in both
computational time and memory utilization, especially for real situations. There are other
problems related to ARM to be considered in GARM, including incremental data mining,
constraint-based mining, interesting measures, negative rule mining, parallel mining, and so
on. They are left as our further explorations.
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SET-Main( D,T ,minsup)
01 Root = Null Tree;
02 For each x in Second-level items of T
03 If ‖t(x)‖ ≥ minsup then NewNode(Root,x);
04 SET −Extend(Root);

SET-Extend(Node) //Recursively generate tree in depth-first
05 For each Fi ∈ Node.Child in T {
06 Fi.Child = NULL;
07 GenTaxChild(Fi);
08 GenJoinChild(Fi);
09 If Fi.Child �= NULL then SET −Extend(Fi);}

GenTaxChild(Fi) //Generate taxonomy-based child itemsets
10 For each x ∈ LastItem(Fi).Child in T {
11.s C = Fi after replace LastItem(Fi) with x; //For SET
11.c C = Fi∪ x; //For cSET
12 If |t(C)| ≥ minsup then {
13.s NewNode(Fi,C); //For SET
13.c cSET .Property(Fi,x,C);} //For cSET

GenJoinChild(Fi) //Generate join-based child itemsets
14 For each Fj ∈ Fi.Sibling{ // j > i
15 C = Fi∪ LastItem(Fj);
16 If |t(C)| ≥ minsup then {
17.s NewNode(Fi,C); //For SET
17.c cSET .Property(Fi,Fj,C);} //For cSET

cSET.Property(Fi,Fj,C) //4 Properties of cSET
18.c If t(Fi) = t(Fj) then { //Prop.1
19.c Replace all Fi with C;
20.c if Fj ∈ Fi.sibling then Remove(Fj);
21.c GenTaxChild(Fi);}
22.c else if t(Fi) ⊂ t(Fj) then { //Prop.2
23.c Replace all Fi with C;
24.c GenTaxChild(Fi);}
25.c else if t(Fi) ⊃ t(Fj) then { //Prop.3
26.c If Fj ∈ Fi.sibling then Remove(Fj);
27.c If !Hash(t(C)) then NewNode(Fi,C);}
28.c else if !Hash(t(C)) then NewNode(Fi,C); //Prop.4

Hash(tidset) //Find tidset in Hash Table
29.c if Found tidset in Hash Table then return 1;
30.c else Add tidset in Hash Table; return 0;

Figure A.6 The pseudo-codes of SET and cSET algorithm
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Figure A.7 Experimental results: taxonomy characteristics
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Figure A.8 Experimental results: scaling database
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Appendix B

Stoplist and Stemming Algorithm

Porter Stemming Algorithm [Porter, 1980]

To present the suffix stripping algorithm in its entirety we will need a few definitions.

A consonant in a word is a letter other than A, E, I, O or U, and other than Y preceded by
a consonant. (The fact that the term ‘consonant’ is defined to some extent in terms of itself
does not make it ambiguous.) So in TOY the consonants are T and Y, and in SYZYGY they
are S, Z and G. If a letter is not a consonant it is a vowel.

A consonant will be denoted by c, a vowel by v. A list ccc... of length greater than 0 will be
denoted by C, and a list vvv... of length greater than 0 will be denoted by V. Any word, or
part of a word, therefore has one of the four forms:

CVCV ... C
CVCV ... V
VCVC ... C
VCVC ... V

These may all be represented by the single form

[C]VCVC ... [V]

where the square brackets denote arbitrary presence of their contents. Using (VC)m to de-
note VC repeated m times, this may again be written as

[C](VC){m}[V].

m will be called the measure of any word or word part when represented in this form. The
case m = 0 covers the null word. Here are some examples:

m=0 TR, EE, TREE, Y, BY.
m=1 TROUBLE, OATS, TREES, IVY.
m=2 TROUBLES, PRIVATE, OATEN, ORRERY.

The rules for removing a suffix will be given in the form

(condition) S1 -> S2
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This means that if a word ends with the suffix S1, and the stem before S1 satisfies the given
condition, S1 is replaced by S2. The condition is usually given in terms of m, e.g.

(m > 1) EMENT ->

Here S1 is ‘EMENT’ and S2 is null. This would map REPLACEMENT to REPLAC, since
REPLAC is a word part for which m = 2.

The ‘condition’ part may also contain the following: *S - the stem ends with S (and similarly
for the other letters). *v* - the stem contains a vowel. *d - the stem ends with a double
consonant (e.g. -TT, -SS). *o - the stem ends cvc, where the second c is not W, X or Y (e.g.
-WIL, -HOP).

And the condition part may also contain expressions with and, or and not, so that

(m>1 and (*S or *T))

tests for a stem with m>1 ending in S or T, while

(*d and not (*L or *S or *Z))

tests for a stem ending with a double consonant other than L, S or Z. Elaborate conditions
like this are required only rarely.

In a set of rules written beneath each other, only one is obeyed, and this will be the one with
the longest matching S1 for the given word. For example, with

SSES -> SS
IES -> I
SS -> SS
S ->

(here the conditions are all null) CARESSES maps to CARESS since SSES is the longest
match for S1. Equally CARESS maps to CARESS (S1=‘SS’) and CARES to CARE (S1=‘S’).

For the rules below, examples of their application, successful or otherwise, are given on the
right in lower case. The algorithm now follows:

Step 1a

SSES -> SS caresses -> caress
IES -> I ponies -> poni

ties -> ti
SS -> SS caress -> caress
S -> cats -> cat

Step 1b
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(m>0) EED -> EE feed -> feed
agreed -> agree

(*v*) ED -> plastered -> plaster
bled -> bled

(*v*) ING -> motoring -> motor
sing -> sing

If the second or third of the rules in Step 1b is successful, the following is done:

AT -> ATE conflat(ed) -> conflate
BL -> BLE troubl(ed) -> trouble
IZ -> IZE siz(ed) -> size
(*d and not (*L or *S or *Z))

-> single letter
hopp(ing) -> hop
tann(ed) -> tan
fall(ing) -> fall
hiss(ing) -> hiss
fizz(ed) -> fizz

(m=1 and *o) -> E fail(ing) -> fail
fil(ing) -> file

The rule to map to a single letter causes the removal of one of the double letter pair. The -E
is put back on -AT, -BL and -IZ, so that the suffixes -ATE, -BLE and -IZE can be recognised
later. This E may be removed in step 4.

Step 1c

(*v*) Y -> I happy -> happi
sky -> sky

Step 1 deals with plurals and past participles. The subsequent steps are much more straight-
forward.

Step 2

(m>0) ATIONAL -> ATE relational -> relate
(m>0) TIONAL -> TION conditional -> condition

rational -> rational
(m>0) ENCI -> ENCE valenci -> valence
(m>0) ANCI -> ANCE hesitanci -> hesitance
(m>0) IZER -> IZE digitizer -> digitize
(m>0) ABLI -> ABLE conformabli -> conformable
(m>0) ALLI -> AL radicalli -> radical
(m>0) ENTLI -> ENT differentli -> different
(m>0) ELI -> E vileli - > vile
(m>0) OUSLI -> OUS analogousli -> analogous
(m>0) IZATION -> IZE vietnamization -> vietnamize
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(m>0) ATION -> ATE predication -> predicate
(m>0) ATOR -> ATE operator -> operate
(m>0) ALISM -> AL feudalism -> feudal
(m>0) IVENESS -> IVE decisiveness -> decisive
(m>0) FULNESS -> FUL hopefulness -> hopeful
(m>0) OUSNESS -> OUS callousness -> callous
(m>0) ALITI -> AL formaliti -> formal
(m>0) IVITI -> IVE sensitiviti -> sensitive
(m>0) BILITI -> BLE sensibiliti -> sensible

To fasten the test for the string S1, doing a program switch on the penultimate letter of the
word being tested is applied. This gives a fairly even breakdown of the possible values of
the string S1. It will be seen in fact that the S1-strings in step 2 are presented here in the
alphabetical order of their penultimate letter. Similar techniques may be applied in the other
steps.

Step 3

(m>0) ICATE -> IC triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
(m>0) ICITI -> IC electriciti -> electric
(m>0) ICAL -> IC electrical -> electric
(m>0) FUL -> hopeful -> hope
(m>0) NESS -> goodness -> good

Step 4

(m>1) AL -> revival -> reviv
(m>1) ANCE -> allowance -> allow
(m>1) ENCE -> inference -> infer
(m>1) ER -> airliner -> airlin
(m>1) IC -> gyroscopic -> gyroscop
(m>1) ABLE -> adjustable -> adjust
(m>1) IBLE -> defensible -> defens
(m>1) ANT -> irritant -> irrit
(m>1) EMENT -> replacement -> replac
(m>1) MENT -> adjustment -> adjust
(m>1) ENT -> dependent -> depend
(m>1 and (*S or *T)) ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> communism -> commun
(m>1) ATE -> activate -> activ
(m>1) ITI -> angulariti -> angular
(m>1) OUS -> homologous -> homolog
(m>1) IVE -> effective -> effect
(m>1) IZE -> bowdlerize -> bowdler

The suffixes are now removed. All that remains is a little tidying up.
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Step 5a

(m>1) E -> probate -> probat
rate -> rate

(m=1 and not *o) E -> cease -> ceas

Step 5b

(m > 1 and *d and *L) -> single letter
controll -> control
roll -> roll

The algorithm is careful not to remove a suffix when the stem is too short, the length of the
stem being given by its measure, m. There is no linguistic basis for this approach. It was
merely observed that m could be used quite effectively to help decide whether or not it was
wise to take off a suffix. For example, in the following two lists:

list A list B
------ ------
RELATE DERIVATE
PROBATE ACTIVATE
CONFLATE DEMONSTRATE
PIRATE NECESSITATE
PRELATE RENOVATE

-ATE is removed from the list B words, but not from the list A words. This means that
the pairs DERIVATE/DERIVE, ACTIVATE/ACTIVE, DEMONSTRATE/DEMONS- TRA-
BLE, NECESSITATE/NECESSITOUS, will conflate together. The fact that no attempt is
made to identify prefixes can make the results look rather inconsistent. Thus PRELATE
does not lose the -ATE, but ARCHPRELATE becomes ARCHPREL. In practice this does
not matter too much, because the presence of the prefix decreases the probability of an erro-
neous conflation.

Complex suffixes are removed bit by bit in the different steps. Thus GENERALIZATIONS
is stripped to GENERALIZATION (Step 1), then to GENERALIZE (Step 2), then to GEN-
ERAL (Step 3), and then to GENER (Step 4). OSCILLATORS is stripped to OSCILLATOR
(Step 1), then to OSCILLATE (Step 2), then to OSCILL (Step 4), and then to OSCIL (Step
5).

List of 524 English Stopwords from SMART System [Rocchio, 1971]
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Table B.1 List of 524 English stopwords

a able about above according accordingly
across actually after afterwards again against
all allow allows almost alone along
already also although always am among
amongst an and another any anybody
anyhow anyone anything anyway anyways anywhere
apart appear appreciate appropriate are around
as aside ask asking associated at
available away awfully b be became
because become becomes becoming been before
beforehand behind being believe below beside
besides best better between beyond both
brief but by c came can
cannot cant cause causes certain certainly
changes clearly co com come comes
concerning consequently consider considering contain containing
contains corresponding could course currently d
definitely described despite did different do
does doing done down downwards during
e each edu eg eight either
else elsewhere enough entirely especially et
etc even ever every everybody everyone
everything everywhere ex exactly example except
f far few fifth first five
followed following follows for former formerly
forth four from further furthermore g
get gets getting given gives go
goes going gone got gotten greetings
h had happens hardly has have
having he hello help hence her
here hereafter hereby herein hereupon hers
herself hi him himself his hither
hopefully how howbeit however i ie
if ignored immediate in inasmuch inc
indeed indicate indicated indicates inner insofar
instead into inward is it its
itself j just k keep keeps
kept know knows known l last
lately later latter latterly least less
lest let like liked likely little
look looking looks ltd m mainly
many may maybe me mean meanwhile
merely might more moreover most mostly
much must my myself n name

94



Table B.2 List of 524 English stopwords (continue)

namely nd near nearly necessary need
needs neither never nevertheless new next
nine no nobody non none noone
nor normally not nothing novel now
nowhere o obviously of off often
oh ok okay old on once
one ones only onto or other
others otherwise ought our ours ourselves
out outside over overall own p
particular particularly per perhaps placed please
plus possible presumably probably provides q
que quite qv r rather rd
re really reasonably regarding regardless regards
relatively respectively right s said same
saw say saying says second secondly
see seeing seem seemed seeming seems
seen self selves sensible sent serious
seriously seven several shall she should
since six so some somebody somehow
someone something sometime sometimes somewhat somewhere
soon sorry specified specify specifying still
sub such sup sure t take
taken tell tends th than thank
thanks thanx that thats the their
theirs them themselves then thence there
thereafter thereby therefore therein theres thereupon
these they think third this thorough
thoroughly those though three through throughout
thru thus to together too took
toward towards tried tries truly try
trying twice two u un under
unfortunately unless unlikely until unto up
upon us use used useful uses
using usually uucp v value various
very via viz vs w want
wants was way we welcome well
went were what whatever when whence
whenever where whereafter whereas whereby wherein
whereupon wherever whether which while whither
who whoever whole whom whose why
will willing wish with within without
wonder would would x y yes
yet you your yours yourself yourselves
z zero
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Appendix C

Some Examples of Publications and Their References

This section present some examples of publications and their references that are used in
the experiments. Only references that exist in our collections are shown here. However,
the document relations among citer (cite from) and citee (cite to) publications including the
relations among citee publications of one publication can be explicitly shown by the title of
publications. Three examples are shown below.

Example 1: K.-T. Cheng, Gate-level test generation for sequential circuits. ACM Transac-
tions on Design Automation of Electronic Systems, 1(4):405442, 1996.

References (a part):

• J.A. Abraham and V.K. Agarwal, Test generation for digital systems, Fault-tolerant computing:
theory and techniques; vol. 1, Prentice-Hall, Inc., Upper Saddle River, NJ, 1986.

• S.T. Chakradhar and S.G. Rothweiler, Redundancy Removal and Test Generation for Circuits
with Non-Boolean Primitives, Proceedings of the 13th IEEE VLSI Test Symposium (VTS’95),
p.12, April 30-May 03, 1995.

• K.-T. Cheng and V.D. Agrawal, Unified Methods for VLSI Simulation and Test Generation,
Kluwer Academic Publishers, Norwell, MA, 1989.

• F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda and R. Mosca, Advanced Techniques
for GA-based sequential ATPGs, Proceedings of the 1996 European conference on Design and
Test, p.375, March 11-14, 1996.

• S. Devadas, H-K.Y. Ma and A.R. Newton, Redundancies and don’t cares in sequential logic
synthesis, Journal of Electronic Testing: Theory and Applications, v.1 n.1, p.15-30, Feb. 1990.

• A. Ghosh, S. Devadas and A.R. Newton, Sequential test generation at the register-transfer and
logic levels, Proceedings of the 27th ACM/IEEE conference on Design automation, p.580-586,
June 24-27, 1990, Orlando, Florida, United States.

• U. Glässer and H.T. Vierhaus, FOGBUSTER: an efficient algorithm for sequential test gener-
ation, Proceedings of the conference on European design automation, p.230-235, September
18-22, 1995, Brighton, England.

• D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 1989.

• M.C. Hansen and J.P. Hayes, High-Level Test Generation Using Symbolic Scheduling, Pro-
ceedings of the IEEE International Test Conference on Driving Down the Cost of Test, p.586-
595, October 21-25, 1995.
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Example 2: L. Becker and R.H. Güting, Rule-based optimization and query processing in an
extensible geometric database system. ACM Transactions on Database Systems, 17(2):247303,
1992.

References (a part)

• D.S. Batory, J.R. Barnett, J.F. Garza, K.P. Smith, K. Tsukuda, C. Twichell and T.E. Wise,
GENESIS: An Extensible Database Management System, IEEE Transactions on Software En-
gineering, v.14 n.11, p.1711-1730, November 1988.

• M.J. Carey, D.J. DeWitt, D. Frank, M. Muralikrishna , G. Graefe, J.E. Richardson and E.J.
Shekita, The architecture of the EXODUS extensible DBMS, Proceedings on the 1986 in-
ternational workshop on Object-oriented database systems, p.52-65, September 23-26, 1986,
Pacific Grove, California, United States.

• N. Derrett and M.-C. Shan, Rule-based query optimization in IRIS, Proceedings of the 17th
conference on ACM Annual Computer Science Conference, p.78-86, February 21-23, 1989,
Louisville, Kentucky.

• K.R. Dittrich, Object-oriented database systems (extended abstract): the notions and the issues,
Proceedings on the 1986 international workshop on Object-oriented database systems, p.2-4,
September 23-26, 1986, Pacific Grove, California, United States.

• J.C. Freytag, A rule-based view of query optimization, Proceedings of the 1987 ACM SIG-
MOD international conference on Management of data, p.173-180, May 27-29, 1987, San
Francisco, California, United States.

Example 3: A. Meyer, Pen computing: a technology overview and a vision. SIGCHI Bulletin,
27(3):4690, 1995.

References (a part)

• S.L. Miertschin and C.L. Willis, Mobile computing in the freshman computer literacy course
what impact?, Proceedings of the 5th conference on Information technology education, Octo-
ber 28-30, 2004, Salt Lake City, UT, USA.

• A.C. Long, Jr., Improving gestures and interaction techniques for pen-based user interfaces,
CHI 98 conference summary on Human factors in computing systems, p.58-59, April 18-23,
1998, Los Angeles, California, United States.

• S. Chatty and P. Lecoanet, Pen computing for air traffic control, Proceedings of the SIGCHI
conference on Human factors in computing systems: common ground, p.87-94, April 13-18,
1996, Vancouver, British Columbia, Canada.

• I. Poupyrev, M. Okabe and S. Maruyama, Haptic feedback for pen computing: directions and
strategies, CHI ’04 extended abstracts on Human factors in computing systems, April 24-29,
2004, Vienna, Austria.

• R. Plamondon and S.N. Srihari, On-Line and Off-Line Handwriting Recognition: A Compre-
hensive Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, v.22 n.1,
p.63-84, January 2000.
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Appendix D

List of Publications

International Journals

• Kritsada Sriphaew and Thanaruk Theeramunkong, Fast Algorithms for Mining Generalized
Frequent Patterns of Generalized Association Rules. IEICE Transactions on Information and
Systems, Vol.E87-D No3, March 2004. pp. 761-770 (10 pages).

• Kritsada Sriphaew and Thanaruk Theeramunkong, Quality Evaluation for Document Relation
Discovery using Citation Information. IEICE Transactions on Information and Systems (11
pages) (to be appeared).

• Kritsada Sriphaew and Thanaruk Theeramunkong, Universal Frequent Itemset Mining for Dis-
covering Document Relations Among Scientific Research Publications. Submitted to Data &
Knowledge Engineering (23 pages).

Lecture Notes

• Kritsada Sriphaew and Thanaruk Theeramunkong, Mining Generalized Closed Frequent Item-
sets of Generalized Association Rules. Lecture Notes in Artificial Intelligence; Edited by J.G.
Carbonell and J. Siekmann, Knowledge-Based Intelligent Information and Engineering Sys-
tems, 2003, pp. 476-484 (9 pages).

International Conferences

• Kritsada Sriphaew and Thanaruk Theeramunkong, Measuring the Validity of Document Re-
lations Discovered from Frequent Itemset Mining. Proceedings of the IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007), April 2007, Hawaii, USA, pp.
293-299 (7 pages).

• Kritsada Sriphaew and Thanaruk Theeramunkong, Revealing Topic-based Relationship Among
Documents using Association Rule Mining. Proceedings of the 23’rd IASTED International
Muti-Conference on Applied Informatics: Artificial Intelligence and Applications, February
2005, Innsbruck, Austria, pp. 112-117 (6 pages).

• Kritsada Sriphaew and Thanaruk Theeramunkong, A New Method for Finding Generalized
frequent Itemsets in Generalized Association Rule Mining. Proceedings of the seventh In-
ternational Symposium on Computers and Communications, July 2002, Taormina-Giardini
Naxos, Italy, pp. 1040-1045 (6 pages).
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• Kritsada Sriphaew and Thanaruk Theeramunkong, A New Set Enumeration for Mining Fre-
quent Itemsets in Generalized Association Rule Mining. Proceedings of the International Sym-
posium on Communications and Information Technologies 2001, November 2001, Chiangmai,
Thailand, pp. 25-28 (4 pages).
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